Problem Statement

For each positive integer n, denote by $d(n)$ the number of positive divisors of n. A positive integer n is said to be special if there is no $k<n$ with $d(k)=d(n)$. Compute the sum of all special numbers no greater than N .

Input: A single integer N .

Output: A single integer: the sum of all special numbers no greater than N .

Constraints: $1 \leq \mathrm{N} \leq 100000$.

Sample Input:
4

Sample Output:
7

Explanation:
3 is not special since $d(2)=d(3)=2.1,2$, and 4 are special, so the answer is $1+2+4=7$.

