
Shortest Paths and 
Dijkstra’s Algorithm

15-295 Competition Programming and Problem Solving



Dijkstra’s Algorithm
● Single-source shortest path (SSSP) problem: Given an edge-weighted graph 

and a source vertex s, find shortest paths to each other vertex from s
● Framework for SSSP:

○ Maintain “distance estimates” = the length of the shortest path found so far
○ Improve distance estimates by “relaxing” outgoing edges, i.e. if

Then update dist(v).

● Bellman-Ford algorithm: Relax every edge n times. Complexity: 
● Dijkstra’s Algorithm:

○ If all edge weights are non-negative, each edge only needs to be relaxed once
○ Relax edges in order of the distance from u
○ Using an efficient priority queue, this can be done fast!
○ Complexity: 



Dijkstra’s Algorithm (In textbooks)

Need an efficient algorithm to update the key (distance) of a vertex in 
the priority queue every time a distance estimate is improved.



Dijkstra’s Algorithm (In programming competitions)
● Instead of keeping a unique entry for every vertex in the priority queue, and 

updating the keys as the distances change, allow duplicate entries!
● Then ignore out-of-date entries whenever they are popped from the queue

Ignore duplicate (out-of-date) 
entries!


