Shortest Paths and
Dijkstra’s Algorithm

15-295 Competition Programming and Problem Solving



Dijkstra’s Algorithm

e Single-source shortest path (SSSP) problem: Given an edge-weighted graph
and a source vertex s, find shortest paths to each other vertex from s
e Framework for SSSP:

o Maintain “distance estimates” = the length of the shortest path found so far
o Improve distance estimates by “relaxing” outgoing edges, i.e. if
dist(v) > dist(u) + w(u, v)
Then update dist(v).
e Bellman-Ford algorithm: Relax every edge n times. Complexity: O(nm)

e Dijkstra’s Algorithm:

If all edge weights are non-negative, each edge only needs to be relaxed once
Relax edges in order of the distance from u

Using an efficient priority queue, this can be done fast!

Complexity: O(m log(n))

(@)

o O O



Dijkstra’s Algorithm (In textbooks)

function DIJKSTRA(G =(V, E), 5)
dist{1..n]= o0
pred[1l..n]=0
dist[s] =0
Q= priority_queue(V[1..n], key(v) = dist[v])
while Qis not empty do
u = Q.pop_min()
for each edge e that is adjacent to u do
// Priority queue keys must be updated if relax improves a distance estimate!
RELAX(e)
return dist{1..n), pred[1..n]

function RELAX(e =(u, )
if dist{v] > dist{u] + w(u, v) then
dist{v] =distiu] + w(u, v)

predlv]=u \

Need an efficient algorithm to update the key (distance) of a vertex in
the priority queue every time a distance estimate is improved.




Dijkstra’s Algorithm (In programming competitions)

e Instead of keeping a unique entry for every vertex in the priority queue, and
updating the keys as the distances change, allow duplicate entries!
e Then ignore out-of-date entries whenever they are popped from the queue

function DIJKSTRA(G =(V, E), §)

dist[1l..n] = o0
pred1..n]=0
dist{s]=0

Q = priority_queue()

Ignore duplicate (out-of-date)
entries!

Q.push(s, key=0)

while Qis not empty do
u, key = Q.pop_min()
if dist{u]= key then

for each edge e that is adjacent to u do
if dist{v] > dist{u] + w(u, v) then
distlv] = dist{u] + w(u, v)
predlv]=u
Q.push(v, key = dist{ v])
return dist[1..n], pred[1..n]




