A. Number of Divisors

1 second, 256 megabytes

For a positive integer n, we use f(n) to denote the number of divisors of n.

For example, f(1) = 1, f(2) = 2, f(3) = 2, f(4) = 3.

Given *n*, output $\sum_{i=1}^{n} f(n)$.

Input

A single integer $n (1 \le n \le 10^6)$.

Output Display $\sum_{i=1}^{n} f(n)$.

input	
4	
output	
8	

B. Mertens Function

1 second, 256 megabytes

For a given positive integer *n*, let define $\mu(n)$ to be $\mu(n) = \begin{cases} 0 & \text{if } n \text{ has one or more repeated prime factors} \\ 1 & \text{if } n = 1 \\ (-1)^k & \text{if } n \text{ has } k \text{ distinct prime factors} \end{cases}$

For a given positive integer *n*, the Mertens function is defined to be $M(n) = \sum_{i=1}^{n} \mu(n)$.

Given a given positive integer n, output the Mertens function M(n).

Input

A single integer n ($1 \le n \le 10^7$).

Output

Display the Mertens function M(n).

nput	
utput	
2	

Δ_i	п	a_1, a_2, \ldots, a_n	Q		i n	п	Δ_i
		$n \qquad Q 1 \le n, Q \le $	10 ⁵				
	n		i	a_i			
	0		i	Δ.			

C. GCD Queries

1 second, 256 megabytes

There are *n* integers. Initially they are a_1, a_2, \ldots, a_n . There are *Q* modifications. The *i*-th modification will increase all the *n* integers by Δ_i . Note that Δ_i could be negative. For each modification, output the greatest common divisor of the *n* integers after that modification.

Input

The first line contains two integers *n* and Q ($1 \le n, Q \le 10^5$).

Each of the following n lines contains a single integer. The *i*-th line gives a_i .

Each of the following Q lines contains a single integer. The *i*-th line gives Δ_i .

It is guaranteed that all the *n* integers are in $[-10^{16}, 10^{16}]$ at any time.

Output

Display Q lines, where each line contains a single integer. The *i*t-h integer is the greatest common divisor of the *n* integers after the *i*-th modification.

nput	
2	
5	
1	
putput	

D. Divisible by Seven

1 second, 256 megabytes

You have number *a*, whose decimal representation quite luckily contains digits 1, 6, 8, 9. Rearrange the digits in its decimal representation so that the resulting number will be divisible by 7.

Number *a* doesn't contain any leading zeroes and contains digits 1, 6, 8, 9 (it also can contain another digits). The resulting number also mustn't contain any leading zeroes.

Input

The first line contains positive integer a in the decimal record. It is guaranteed that the record of number a contains digits: 1, 6, 8, 9. Number a doesn't contain any leading zeroes. The decimal representation of number a contains at least 4 and at most 10^6 characters.

Output

Print a number in the decimal notation without leading zeroes — the result of the permutation.

If it is impossible to rearrange the digits of the number *a* in the required manner, print 0.

input
1689
output
1869
input
18906
output
18690

E. Multipliers

2 seconds, 256 megabytes

Ayrat has number *n*, represented as it's prime factorization p_i of size *m*, i.e. $n = p_1 \cdot p_2 \cdot ... \cdot p_m$. Ayrat got secret information that the product of all divisors of *n* taken modulo $10^9 + 7$ is the password to the secret data base. Now he wants to calculate this value.

Input

The first line of the input contains a single integer m ($1 \le m \le 200\ 000$) — the number of primes in factorization of n.

The second line contains *m* primes numbers $p_i (2 \le p_i \le 200\ 000)$.

Output

Print one integer – the product of all divisors of *n* modulo $10^9 + 7$.

Input	
3	
putput	
6	
Input	
3 2	
putput	
728	

In the first sample $n = 2 \cdot 3 = 6$. The divisors of 6 are 1, 2, 3 and 6, their product is equal to $1 \cdot 2 \cdot 3 \cdot 6 = 36$.

In the second sample $2 \cdot 3 \cdot 2 = 12$. The divisors of 12 are 1, 2, 3, 4, 6 and 12. $1 \cdot 2 \cdot 3 \cdot 4 \cdot 6 \cdot 12 = 1728$.

F. The Sum of the k-th Powers

2 seconds, 256 megabytes

There are well-known formulas: $\sum_{i=1}^{n} i = 1 + 2 + \ldots + n = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \ldots + n^2 = \frac{n(2n+1)(n+1)}{6}, \sum_{i=1}^{n} i^3 = 1^3 + 2^3 + \ldots + n^3 = \left(\frac{n(n+1)}{2}\right)^2.$ Also mathematicians found similar formulas for higher degrees. Find the value of the sum $\sum_{i=1}^{n} i^k = 1^k + 2^k + \ldots + n^k$ modulo $10^9 + 7$ (so you should find the remainder after dividing the answer by the value $10^9 + 7$).

Input

The only line contains two integers n, k ($1 \le n \le 10^9, 0 \le k \le 10^6$).

Output

Print the only integer a – the remainder after dividing the value of the sum by the value $10^9 + 7$.

input
4 1
output
10
input
4 2
output
30
input
4 3
output
100
input
4 0
output
4

G. On Iteration of One Well-Known Function

1 second, 256 megabytes

Of course, many of you can calculate $\varphi(n)$ – the number of positive integers that are less than or equal to *n*, that are coprime with *n*. But what if we need to calculate $\varphi(\varphi(...\varphi(n)))$, where function φ is taken *k* times and *n* is given in the canonical decomposition into prime factors?

You are given *n* and *k*, calculate the value of $\varphi(\varphi(...\varphi(n)))$. Print the result in the canonical decomposition into prime factors.

Input

The first line contains integer m ($1 \le m \le 10^5$) – the number of distinct prime divisors in the canonical representation of n.

Each of the next *m* lines contains a pair of space-separated integers p_i , a_i ($2 \le p_i \le 10^6$; $1 \le a_i \le 10^{17}$) — another prime divisor of number *n* and its power in the canonical representation. The sum of all a_i doesn't exceed 10^{17} . Prime divisors in the input follow in the strictly increasing order.

The last line contains integer k ($1 \le k \le 10^{18}$).

Output

In the first line, print integer w – the number of distinct prime divisors of number $\varphi(\varphi(...\varphi(n)))$, where function φ is taken k times.

Each of the next *w* lines must contain two space-separated integers q_i , b_i ($b_i \ge 1$) – another prime divisor and its power in the canonical representation of the result. Numbers q_i must go in the strictly increasing order.

nput	
1	
utput	
1	
1	
nput	

2	
output	

input	
1 2 1000000000000000 100000000000000	
output	
1 2 900000000000000	

You can read about canonical representation of a positive integer here:

http://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic.

You can read about function $\varphi(n)$ here: http://en.wikipedia.org/wiki/Euler's_totient_function.