
3/20/19, 1)37 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/190320/problems/problems.html

15-295 Spring 2019 #8 Strings

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Dima and Text Messages
2 seconds, 256 megabytes

Seryozha has a very changeable character. This time he refused to leave the room to Dima and his girlfriend (her hame is
Inna, by the way). However, the two lovebirds can always find a way to communicate. Today they are writing text
messages to each other.

Dima and Inna are using a secret code in their text messages. When Dima wants to send Inna some sentence, he writes
out all words, inserting a heart before each word and after the last word. A heart is a sequence of two characters: the
"less" characters (<) and the digit three (3). After applying the code, a test message looks like that: <3word <3word <3
... word <3.

Encoding doesn't end here. Then Dima inserts a random number of small English characters, digits, signs "more" and
"less" into any places of the message.

Inna knows Dima perfectly well, so she knows what phrase Dima is going to send her beforehand. Inna has just got a text
message. Help her find out if Dima encoded the message correctly. In other words, find out if a text message could have
been received by encoding in the manner that is described above.

Input
The first line contains integer n (1 ≤ n ≤ 10) — the number of words in Dima's message. Next n lines contain non-
empty words, one word per line. The words only consist of small English letters. The total length of all words doesn't
exceed 10 .

The last line contains non-empty text message that Inna has got. The number of characters in the text message doesn't
exceed 10 . A text message can contain only small English letters, digits and signs more and less.

Output
In a single line, print "yes" (without the quotes), if Dima decoded the text message correctly, and "no" (without the
quotes) otherwise.

input
3

i

love

you

<3i<3love<23you<3

input
7

i

am

not

main

in

the

family

<3i<>3am<3the<3<main<3in<3the<3><3family<3

Please note that Dima got a good old kick in the pants for the second sample from the statement.

1 2
n

5

5

5

output
yes

output
no

B. Lucky Common Subsequence
3 seconds, 512 megabytes

In mathematics, a subsequence is a sequence that can be derived from another sequence by deleting some elements
without changing the order of the remaining elements. For example, the sequence BDF is a subsequence of ABCDEF. A
substring of a string is a continuous subsequence of the string. For example, BCD is a substring of ABCDEF.

You are given two strings s , s and another string called virus. Your task is to find the longest common subsequence of
s and s , such that it doesn't contain virus as a substring.

Input
The input contains three strings in three separate lines: s , s and virus (1 ≤ |s |, |s |, |virus| ≤ 100). Each string
consists only of uppercase English letters.

Output
Output the longest common subsequence of s and s without virus as a substring. If there are multiple answers, any of
them will be accepted.

If there is no valid common subsequence, output 0.

input
AJKEQSLOBSROFGZ

OVGURWZLWVLUXTH

OZ

input
AA

A

A

1 2
1 2

1 2 1 2

1 2

output
ORZ

output
0

C. Martian Strings
2 seconds, 256 megabytes

During the study of the Martians Petya clearly understood that the Martians are absolutely lazy. They like to sleep and
don't like to wake up.

Imagine a Martian who has exactly n eyes located in a row and numbered from the left to the right from 1 to n. When a
Martian sleeps, he puts a patch on each eye (so that the Martian morning doesn't wake him up). The inner side of each
patch has an uppercase Latin letter. So, when a Martian wakes up and opens all his eyes he sees a string s consisting of
uppercase Latin letters. The string's length is n.

"Ding dong!" — the alarm goes off. A Martian has already woken up but he hasn't opened any of his eyes. He feels that
today is going to be a hard day, so he wants to open his eyes and see something good. The Martian considers only m
Martian words beautiful. Besides, it is hard for him to open all eyes at once so early in the morning. So he opens two non-
overlapping segments of consecutive eyes. More formally, the Martian chooses four numbers a, b, c, d,
(1 ≤ a ≤ b < c ≤ d ≤ n) and opens all eyes with numbers i such that a ≤ i ≤ b or c ≤ i ≤ d. After the Martian opens the
eyes he needs, he reads all the visible characters from the left to the right and thus, he sees some word.

Let's consider all different words the Martian can see in the morning. Your task is to find out how many beautiful words
are among them.

Input
The first line contains a non-empty string s consisting of uppercase Latin letters. The strings' length is n (2 ≤ n ≤ 10).
The second line contains an integer m (1 ≤ m ≤ 100) — the number of beautiful words. Next m lines contain the beautiful
words p , consisting of uppercase Latin letters. Their length is from 1 to 1000. All beautiful strings are pairwise different.

Output
Print the single integer — the number of different beautiful strings the Martian can see this morning.

input
ABCBABA

2

BAAB

ABBA

Let's consider the sample test. There the Martian can get only the second beautiful string if he opens segments of eyes
a = 1, b = 2 and c = 4, d = 5 or of he opens segments of eyes a = 1, b = 2 and c = 6, d = 7.

5

i

output
1

Statement is not available on English languageStatement is not available on English language

E. Fake News (hard)
5 seconds, 256 megabytes

Now that you have proposed a fake post for the HC Facebook page, Heidi wants to measure the quality of the post
before actually posting it. She recently came across a (possibly fake) article about the impact of fractal structure on
multimedia messages and she is now trying to measure the self-similarity of the message, which is defined as

where the sum is over all nonempty strings p and is the number of occurences of p in s as a substring. (Note
that the sum is infinite, but it only has a finite number of nonzero summands.)

Heidi refuses to do anything else until she knows how to calculate this self-similarity. Could you please help her? (If you
would like to instead convince Heidi that a finite string cannot be a fractal anyway – do not bother, we have already tried.)

Input
The input starts with a line indicating the number of test cases T (1 ≤ T ≤ 10). After that, T test cases follow, each of
which consists of one line containing a string s (1 ≤ |s| ≤ 100 000) composed of lowercase letters (a-z).

Output
Output T lines, every line containing one number – the answer to the corresponding test case.

input
4

aa

abcd

ccc

abcc

A string s contains another string p as a substring if p is a contiguous subsequence of s. For example, ab is a substring
of cab but not of acb.

2

output
5

10

14

12

F. Fibonacci Suffix
1 second, 256 megabytes

Let's denote (yet again) the sequence of Fibonacci strings:

 0, 1, , where the plus sign denotes the concatenation of two strings.

Let's denote the lexicographically sorted sequence of suffixes of string as . For example, is 01101,
and is the following sequence: 01, 01101, 1, 101, 1101. Elements in this sequence are numbered from .

Your task is to print first characters of -th element of . If there are less than characters in this suffix, then
output the whole suffix.

Input
The only line of the input contains three numbers , and (,) denoting the index of the
Fibonacci string you have to consider, the index of the element of and the number of characters you have to
output, respectively.

It is guaranteed that does not exceed the length of .

Output
Output first characters of -th element of , or the whole element if its length is less than .

input
4	5	3

input
4	3	3

! (0) = ! (1) = ! (") = ! (" − 2) + ! (" − 1)
! (") #(! (")) ! (4)

#(! (4)) 1
$ % #(! (&)) $

& % $ 1 ≤ &, $ ≤ 200 1 ≤ % ≤ 1018

#(! (&))

% ! (&)

$ % #(! (&)) $

output
110

output
1

G. Speed Dial
2 seconds, 256 megabytes

Polycarp's phone book contains phone numbers, each of them is described by — the number itself and — the
number of times Polycarp dials it in daily.

Polycarp has just bought a brand new phone with an amazing speed dial feature! More precisely, buttons on it can have
a number assigned to it (not necessary from the phone book). To enter some number Polycarp can press one of these
buttons and then finish the number using usual digit buttons (entering a number with only digit buttons is also possible).

Speed dial button can only be used when no digits are entered. No button can have its number reassigned.

What is the minimal total number of digit number presses Polycarp can achieve after he assigns numbers to speed dial
buttons and enters each of the numbers from his phone book the given number of times in an optimal way?

Input
The first line contains two integers and (,) — the amount of numbers in Polycarp's phone
book and the number of speed dial buttons his new phone has.

The -th of the next lines contain a string and an integer , where is a non-empty string of digits
from to inclusive (the -th number), and is the amount of times it will be dialed, respectively.

It is guaranteed that the total length of all phone numbers will not exceed .

Output
Print a single integer — the minimal total number of digit number presses Polycarp can achieve after he assigns
numbers to speed dial buttons and enters each of the numbers from his phone book the given number of times in an
optimal way.

input
3	1

0001	5

001	4

01	1

input
3	1

0001	5

001	6

01	1

The only speed dial button in the first example should have "0001" on it. The total number of digit button presses will be
 for the first number + for the second + for the third. in total.

The only speed dial button in the second example should have "00" on it. The total number of digit button presses will be
 for the first number + for the second + for the third. in total.

& '" $"

%
%

& % 1 ≤ & ≤ 500 1 ≤ % ≤ 10

" & '" $" (1 ≤ ≤ 500)$" '"
0 9 " $"

500

output
14

output
18

0 ⋅ 5 3 ⋅ 4 2 ⋅ 1 14

2 ⋅ 5 1 ⋅ 6 2 ⋅ 1 18

15-295 Spring 2019 Problem Set 8 String Algorithms

3/20/19, 1)37 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/190320/problems/problems.html

15-295 Spring 2019 #8 Strings

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Dima and Text Messages
2 seconds, 256 megabytes

Seryozha has a very changeable character. This time he refused to leave the room to Dima and his girlfriend (her hame is
Inna, by the way). However, the two lovebirds can always find a way to communicate. Today they are writing text
messages to each other.

Dima and Inna are using a secret code in their text messages. When Dima wants to send Inna some sentence, he writes
out all words, inserting a heart before each word and after the last word. A heart is a sequence of two characters: the
"less" characters (<) and the digit three (3). After applying the code, a test message looks like that: <3word <3word <3
... word <3.

Encoding doesn't end here. Then Dima inserts a random number of small English characters, digits, signs "more" and
"less" into any places of the message.

Inna knows Dima perfectly well, so she knows what phrase Dima is going to send her beforehand. Inna has just got a text
message. Help her find out if Dima encoded the message correctly. In other words, find out if a text message could have
been received by encoding in the manner that is described above.

Input
The first line contains integer n (1 ≤ n ≤ 10) — the number of words in Dima's message. Next n lines contain non-
empty words, one word per line. The words only consist of small English letters. The total length of all words doesn't
exceed 10 .

The last line contains non-empty text message that Inna has got. The number of characters in the text message doesn't
exceed 10 . A text message can contain only small English letters, digits and signs more and less.

Output
In a single line, print "yes" (without the quotes), if Dima decoded the text message correctly, and "no" (without the
quotes) otherwise.

input
3

i

love

you

<3i<3love<23you<3

input
7

i

am

not

main

in

the

family

<3i<>3am<3the<3<main<3in<3the<3><3family<3

Please note that Dima got a good old kick in the pants for the second sample from the statement.

1 2
n

5

5

5

output
yes

output
no

B. Lucky Common Subsequence
3 seconds, 512 megabytes

In mathematics, a subsequence is a sequence that can be derived from another sequence by deleting some elements
without changing the order of the remaining elements. For example, the sequence BDF is a subsequence of ABCDEF. A
substring of a string is a continuous subsequence of the string. For example, BCD is a substring of ABCDEF.

You are given two strings s , s and another string called virus. Your task is to find the longest common subsequence of
s and s , such that it doesn't contain virus as a substring.

Input
The input contains three strings in three separate lines: s , s and virus (1 ≤ |s |, |s |, |virus| ≤ 100). Each string
consists only of uppercase English letters.

Output
Output the longest common subsequence of s and s without virus as a substring. If there are multiple answers, any of
them will be accepted.

If there is no valid common subsequence, output 0.

input
AJKEQSLOBSROFGZ

OVGURWZLWVLUXTH

OZ

input
AA

A

A

1 2
1 2

1 2 1 2

1 2

output
ORZ

output
0

C. Martian Strings
2 seconds, 256 megabytes

During the study of the Martians Petya clearly understood that the Martians are absolutely lazy. They like to sleep and
don't like to wake up.

Imagine a Martian who has exactly n eyes located in a row and numbered from the left to the right from 1 to n. When a
Martian sleeps, he puts a patch on each eye (so that the Martian morning doesn't wake him up). The inner side of each
patch has an uppercase Latin letter. So, when a Martian wakes up and opens all his eyes he sees a string s consisting of
uppercase Latin letters. The string's length is n.

"Ding dong!" — the alarm goes off. A Martian has already woken up but he hasn't opened any of his eyes. He feels that
today is going to be a hard day, so he wants to open his eyes and see something good. The Martian considers only m
Martian words beautiful. Besides, it is hard for him to open all eyes at once so early in the morning. So he opens two non-
overlapping segments of consecutive eyes. More formally, the Martian chooses four numbers a, b, c, d,
(1 ≤ a ≤ b < c ≤ d ≤ n) and opens all eyes with numbers i such that a ≤ i ≤ b or c ≤ i ≤ d. After the Martian opens the
eyes he needs, he reads all the visible characters from the left to the right and thus, he sees some word.

Let's consider all different words the Martian can see in the morning. Your task is to find out how many beautiful words
are among them.

Input
The first line contains a non-empty string s consisting of uppercase Latin letters. The strings' length is n (2 ≤ n ≤ 10).
The second line contains an integer m (1 ≤ m ≤ 100) — the number of beautiful words. Next m lines contain the beautiful
words p , consisting of uppercase Latin letters. Their length is from 1 to 1000. All beautiful strings are pairwise different.

Output
Print the single integer — the number of different beautiful strings the Martian can see this morning.

input
ABCBABA

2

BAAB

ABBA

Let's consider the sample test. There the Martian can get only the second beautiful string if he opens segments of eyes
a = 1, b = 2 and c = 4, d = 5 or of he opens segments of eyes a = 1, b = 2 and c = 6, d = 7.

5

i

output
1

Statement is not available on English languageStatement is not available on English language

E. Fake News (hard)
5 seconds, 256 megabytes

Now that you have proposed a fake post for the HC Facebook page, Heidi wants to measure the quality of the post
before actually posting it. She recently came across a (possibly fake) article about the impact of fractal structure on
multimedia messages and she is now trying to measure the self-similarity of the message, which is defined as

where the sum is over all nonempty strings p and is the number of occurences of p in s as a substring. (Note
that the sum is infinite, but it only has a finite number of nonzero summands.)

Heidi refuses to do anything else until she knows how to calculate this self-similarity. Could you please help her? (If you
would like to instead convince Heidi that a finite string cannot be a fractal anyway – do not bother, we have already tried.)

Input
The input starts with a line indicating the number of test cases T (1 ≤ T ≤ 10). After that, T test cases follow, each of
which consists of one line containing a string s (1 ≤ |s| ≤ 100 000) composed of lowercase letters (a-z).

Output
Output T lines, every line containing one number – the answer to the corresponding test case.

input
4

aa

abcd

ccc

abcc

A string s contains another string p as a substring if p is a contiguous subsequence of s. For example, ab is a substring
of cab but not of acb.

2

output
5

10

14

12

F. Fibonacci Suffix
1 second, 256 megabytes

Let's denote (yet again) the sequence of Fibonacci strings:

 0, 1, , where the plus sign denotes the concatenation of two strings.

Let's denote the lexicographically sorted sequence of suffixes of string as . For example, is 01101,
and is the following sequence: 01, 01101, 1, 101, 1101. Elements in this sequence are numbered from .

Your task is to print first characters of -th element of . If there are less than characters in this suffix, then
output the whole suffix.

Input
The only line of the input contains three numbers , and (,) denoting the index of the
Fibonacci string you have to consider, the index of the element of and the number of characters you have to
output, respectively.

It is guaranteed that does not exceed the length of .

Output
Output first characters of -th element of , or the whole element if its length is less than .

input
4	5	3

input
4	3	3

! (0) = ! (1) = ! (") = ! (" − 2) + ! (" − 1)
! (") #(! (")) ! (4)

#(! (4)) 1
$ % #(! (&)) $

& % $ 1 ≤ &, $ ≤ 200 1 ≤ % ≤ 1018

#(! (&))

% ! (&)

$ % #(! (&)) $

output
110

output
1

G. Speed Dial
2 seconds, 256 megabytes

Polycarp's phone book contains phone numbers, each of them is described by — the number itself and — the
number of times Polycarp dials it in daily.

Polycarp has just bought a brand new phone with an amazing speed dial feature! More precisely, buttons on it can have
a number assigned to it (not necessary from the phone book). To enter some number Polycarp can press one of these
buttons and then finish the number using usual digit buttons (entering a number with only digit buttons is also possible).

Speed dial button can only be used when no digits are entered. No button can have its number reassigned.

What is the minimal total number of digit number presses Polycarp can achieve after he assigns numbers to speed dial
buttons and enters each of the numbers from his phone book the given number of times in an optimal way?

Input
The first line contains two integers and (,) — the amount of numbers in Polycarp's phone
book and the number of speed dial buttons his new phone has.

The -th of the next lines contain a string and an integer , where is a non-empty string of digits
from to inclusive (the -th number), and is the amount of times it will be dialed, respectively.

It is guaranteed that the total length of all phone numbers will not exceed .

Output
Print a single integer — the minimal total number of digit number presses Polycarp can achieve after he assigns
numbers to speed dial buttons and enters each of the numbers from his phone book the given number of times in an
optimal way.

input
3	1

0001	5

001	4

01	1

input
3	1

0001	5

001	6

01	1

The only speed dial button in the first example should have "0001" on it. The total number of digit button presses will be
 for the first number + for the second + for the third. in total.

The only speed dial button in the second example should have "00" on it. The total number of digit button presses will be
 for the first number + for the second + for the third. in total.

& '" $"

%
%

& % 1 ≤ & ≤ 500 1 ≤ % ≤ 10

" & '" $" (1 ≤ ≤ 500)$" '"
0 9 " $"

500

output
14

output
18

0 ⋅ 5 3 ⋅ 4 2 ⋅ 1 14

2 ⋅ 5 1 ⋅ 6 2 ⋅ 1 18

3/20/19, 1)37 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/190320/problems/problems.html

15-295 Spring 2019 #8 Strings

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Dima and Text Messages
2 seconds, 256 megabytes

Seryozha has a very changeable character. This time he refused to leave the room to Dima and his girlfriend (her hame is
Inna, by the way). However, the two lovebirds can always find a way to communicate. Today they are writing text
messages to each other.

Dima and Inna are using a secret code in their text messages. When Dima wants to send Inna some sentence, he writes
out all words, inserting a heart before each word and after the last word. A heart is a sequence of two characters: the
"less" characters (<) and the digit three (3). After applying the code, a test message looks like that: <3word <3word <3
... word <3.

Encoding doesn't end here. Then Dima inserts a random number of small English characters, digits, signs "more" and
"less" into any places of the message.

Inna knows Dima perfectly well, so she knows what phrase Dima is going to send her beforehand. Inna has just got a text
message. Help her find out if Dima encoded the message correctly. In other words, find out if a text message could have
been received by encoding in the manner that is described above.

Input
The first line contains integer n (1 ≤ n ≤ 10) — the number of words in Dima's message. Next n lines contain non-
empty words, one word per line. The words only consist of small English letters. The total length of all words doesn't
exceed 10 .

The last line contains non-empty text message that Inna has got. The number of characters in the text message doesn't
exceed 10 . A text message can contain only small English letters, digits and signs more and less.

Output
In a single line, print "yes" (without the quotes), if Dima decoded the text message correctly, and "no" (without the
quotes) otherwise.

input
3

i

love

you

<3i<3love<23you<3

input
7

i

am

not

main

in

the

family

<3i<>3am<3the<3<main<3in<3the<3><3family<3

Please note that Dima got a good old kick in the pants for the second sample from the statement.

1 2
n

5

5

5

output
yes

output
no

B. Lucky Common Subsequence
3 seconds, 512 megabytes

In mathematics, a subsequence is a sequence that can be derived from another sequence by deleting some elements
without changing the order of the remaining elements. For example, the sequence BDF is a subsequence of ABCDEF. A
substring of a string is a continuous subsequence of the string. For example, BCD is a substring of ABCDEF.

You are given two strings s , s and another string called virus. Your task is to find the longest common subsequence of
s and s , such that it doesn't contain virus as a substring.

Input
The input contains three strings in three separate lines: s , s and virus (1 ≤ |s |, |s |, |virus| ≤ 100). Each string
consists only of uppercase English letters.

Output
Output the longest common subsequence of s and s without virus as a substring. If there are multiple answers, any of
them will be accepted.

If there is no valid common subsequence, output 0.

input
AJKEQSLOBSROFGZ

OVGURWZLWVLUXTH

OZ

input
AA

A

A

1 2
1 2

1 2 1 2

1 2

output
ORZ

output
0

C. Martian Strings
2 seconds, 256 megabytes

During the study of the Martians Petya clearly understood that the Martians are absolutely lazy. They like to sleep and
don't like to wake up.

Imagine a Martian who has exactly n eyes located in a row and numbered from the left to the right from 1 to n. When a
Martian sleeps, he puts a patch on each eye (so that the Martian morning doesn't wake him up). The inner side of each
patch has an uppercase Latin letter. So, when a Martian wakes up and opens all his eyes he sees a string s consisting of
uppercase Latin letters. The string's length is n.

"Ding dong!" — the alarm goes off. A Martian has already woken up but he hasn't opened any of his eyes. He feels that
today is going to be a hard day, so he wants to open his eyes and see something good. The Martian considers only m
Martian words beautiful. Besides, it is hard for him to open all eyes at once so early in the morning. So he opens two non-
overlapping segments of consecutive eyes. More formally, the Martian chooses four numbers a, b, c, d,
(1 ≤ a ≤ b < c ≤ d ≤ n) and opens all eyes with numbers i such that a ≤ i ≤ b or c ≤ i ≤ d. After the Martian opens the
eyes he needs, he reads all the visible characters from the left to the right and thus, he sees some word.

Let's consider all different words the Martian can see in the morning. Your task is to find out how many beautiful words
are among them.

Input
The first line contains a non-empty string s consisting of uppercase Latin letters. The strings' length is n (2 ≤ n ≤ 10).
The second line contains an integer m (1 ≤ m ≤ 100) — the number of beautiful words. Next m lines contain the beautiful
words p , consisting of uppercase Latin letters. Their length is from 1 to 1000. All beautiful strings are pairwise different.

Output
Print the single integer — the number of different beautiful strings the Martian can see this morning.

input
ABCBABA

2

BAAB

ABBA

Let's consider the sample test. There the Martian can get only the second beautiful string if he opens segments of eyes
a = 1, b = 2 and c = 4, d = 5 or of he opens segments of eyes a = 1, b = 2 and c = 6, d = 7.

5

i

output
1

Statement is not available on English languageStatement is not available on English language

E. Fake News (hard)
5 seconds, 256 megabytes

Now that you have proposed a fake post for the HC Facebook page, Heidi wants to measure the quality of the post
before actually posting it. She recently came across a (possibly fake) article about the impact of fractal structure on
multimedia messages and she is now trying to measure the self-similarity of the message, which is defined as

where the sum is over all nonempty strings p and is the number of occurences of p in s as a substring. (Note
that the sum is infinite, but it only has a finite number of nonzero summands.)

Heidi refuses to do anything else until she knows how to calculate this self-similarity. Could you please help her? (If you
would like to instead convince Heidi that a finite string cannot be a fractal anyway – do not bother, we have already tried.)

Input
The input starts with a line indicating the number of test cases T (1 ≤ T ≤ 10). After that, T test cases follow, each of
which consists of one line containing a string s (1 ≤ |s| ≤ 100 000) composed of lowercase letters (a-z).

Output
Output T lines, every line containing one number – the answer to the corresponding test case.

input
4

aa

abcd

ccc

abcc

A string s contains another string p as a substring if p is a contiguous subsequence of s. For example, ab is a substring
of cab but not of acb.

2

output
5

10

14

12

F. Fibonacci Suffix
1 second, 256 megabytes

Let's denote (yet again) the sequence of Fibonacci strings:

 0, 1, , where the plus sign denotes the concatenation of two strings.

Let's denote the lexicographically sorted sequence of suffixes of string as . For example, is 01101,
and is the following sequence: 01, 01101, 1, 101, 1101. Elements in this sequence are numbered from .

Your task is to print first characters of -th element of . If there are less than characters in this suffix, then
output the whole suffix.

Input
The only line of the input contains three numbers , and (,) denoting the index of the
Fibonacci string you have to consider, the index of the element of and the number of characters you have to
output, respectively.

It is guaranteed that does not exceed the length of .

Output
Output first characters of -th element of , or the whole element if its length is less than .

input
4	5	3

input
4	3	3

! (0) = ! (1) = ! (") = ! (" − 2) + ! (" − 1)
! (") #(! (")) ! (4)

#(! (4)) 1
$ % #(! (&)) $

& % $ 1 ≤ &, $ ≤ 200 1 ≤ % ≤ 1018

#(! (&))

% ! (&)

$ % #(! (&)) $

output
110

output
1

G. Speed Dial
2 seconds, 256 megabytes

Polycarp's phone book contains phone numbers, each of them is described by — the number itself and — the
number of times Polycarp dials it in daily.

Polycarp has just bought a brand new phone with an amazing speed dial feature! More precisely, buttons on it can have
a number assigned to it (not necessary from the phone book). To enter some number Polycarp can press one of these
buttons and then finish the number using usual digit buttons (entering a number with only digit buttons is also possible).

Speed dial button can only be used when no digits are entered. No button can have its number reassigned.

What is the minimal total number of digit number presses Polycarp can achieve after he assigns numbers to speed dial
buttons and enters each of the numbers from his phone book the given number of times in an optimal way?

Input
The first line contains two integers and (,) — the amount of numbers in Polycarp's phone
book and the number of speed dial buttons his new phone has.

The -th of the next lines contain a string and an integer , where is a non-empty string of digits
from to inclusive (the -th number), and is the amount of times it will be dialed, respectively.

It is guaranteed that the total length of all phone numbers will not exceed .

Output
Print a single integer — the minimal total number of digit number presses Polycarp can achieve after he assigns
numbers to speed dial buttons and enters each of the numbers from his phone book the given number of times in an
optimal way.

input
3	1

0001	5

001	4

01	1

input
3	1

0001	5

001	6

01	1

The only speed dial button in the first example should have "0001" on it. The total number of digit button presses will be
 for the first number + for the second + for the third. in total.

The only speed dial button in the second example should have "00" on it. The total number of digit button presses will be
 for the first number + for the second + for the third. in total.

& '" $"

%
%

& % 1 ≤ & ≤ 500 1 ≤ % ≤ 10

" & '" $" (1 ≤ ≤ 500)$" '"
0 9 " $"

500

output
14

output
18

0 ⋅ 5 3 ⋅ 4 2 ⋅ 1 14

2 ⋅ 5 1 ⋅ 6 2 ⋅ 1 18

•
• A B

•
•

N A B

A B

1 000 003

A B
N

N Wi

D

3  A  B  20

0  N  50

1  (Wi)  20

1 000 003

378 609 020

378 609 020 1 000 003 = 607 886 .

> 5

3/20/19, 1)37 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/190320/problems/problems.html

15-295 Spring 2019 #8 Strings

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Dima and Text Messages
2 seconds, 256 megabytes

Seryozha has a very changeable character. This time he refused to leave the room to Dima and his girlfriend (her hame is
Inna, by the way). However, the two lovebirds can always find a way to communicate. Today they are writing text
messages to each other.

Dima and Inna are using a secret code in their text messages. When Dima wants to send Inna some sentence, he writes
out all words, inserting a heart before each word and after the last word. A heart is a sequence of two characters: the
"less" characters (<) and the digit three (3). After applying the code, a test message looks like that: <3word <3word <3
... word <3.

Encoding doesn't end here. Then Dima inserts a random number of small English characters, digits, signs "more" and
"less" into any places of the message.

Inna knows Dima perfectly well, so she knows what phrase Dima is going to send her beforehand. Inna has just got a text
message. Help her find out if Dima encoded the message correctly. In other words, find out if a text message could have
been received by encoding in the manner that is described above.

Input
The first line contains integer n (1 ≤ n ≤ 10) — the number of words in Dima's message. Next n lines contain non-
empty words, one word per line. The words only consist of small English letters. The total length of all words doesn't
exceed 10 .

The last line contains non-empty text message that Inna has got. The number of characters in the text message doesn't
exceed 10 . A text message can contain only small English letters, digits and signs more and less.

Output
In a single line, print "yes" (without the quotes), if Dima decoded the text message correctly, and "no" (without the
quotes) otherwise.

input
3

i

love

you

<3i<3love<23you<3

input
7

i

am

not

main

in

the

family

<3i<>3am<3the<3<main<3in<3the<3><3family<3

Please note that Dima got a good old kick in the pants for the second sample from the statement.

1 2
n

5

5

5

output
yes

output
no

B. Lucky Common Subsequence
3 seconds, 512 megabytes

In mathematics, a subsequence is a sequence that can be derived from another sequence by deleting some elements
without changing the order of the remaining elements. For example, the sequence BDF is a subsequence of ABCDEF. A
substring of a string is a continuous subsequence of the string. For example, BCD is a substring of ABCDEF.

You are given two strings s , s and another string called virus. Your task is to find the longest common subsequence of
s and s , such that it doesn't contain virus as a substring.

Input
The input contains three strings in three separate lines: s , s and virus (1 ≤ |s |, |s |, |virus| ≤ 100). Each string
consists only of uppercase English letters.

Output
Output the longest common subsequence of s and s without virus as a substring. If there are multiple answers, any of
them will be accepted.

If there is no valid common subsequence, output 0.

input
AJKEQSLOBSROFGZ

OVGURWZLWVLUXTH

OZ

input
AA

A

A

1 2
1 2

1 2 1 2

1 2

output
ORZ

output
0

C. Martian Strings
2 seconds, 256 megabytes

During the study of the Martians Petya clearly understood that the Martians are absolutely lazy. They like to sleep and
don't like to wake up.

Imagine a Martian who has exactly n eyes located in a row and numbered from the left to the right from 1 to n. When a
Martian sleeps, he puts a patch on each eye (so that the Martian morning doesn't wake him up). The inner side of each
patch has an uppercase Latin letter. So, when a Martian wakes up and opens all his eyes he sees a string s consisting of
uppercase Latin letters. The string's length is n.

"Ding dong!" — the alarm goes off. A Martian has already woken up but he hasn't opened any of his eyes. He feels that
today is going to be a hard day, so he wants to open his eyes and see something good. The Martian considers only m
Martian words beautiful. Besides, it is hard for him to open all eyes at once so early in the morning. So he opens two non-
overlapping segments of consecutive eyes. More formally, the Martian chooses four numbers a, b, c, d,
(1 ≤ a ≤ b < c ≤ d ≤ n) and opens all eyes with numbers i such that a ≤ i ≤ b or c ≤ i ≤ d. After the Martian opens the
eyes he needs, he reads all the visible characters from the left to the right and thus, he sees some word.

Let's consider all different words the Martian can see in the morning. Your task is to find out how many beautiful words
are among them.

Input
The first line contains a non-empty string s consisting of uppercase Latin letters. The strings' length is n (2 ≤ n ≤ 10).
The second line contains an integer m (1 ≤ m ≤ 100) — the number of beautiful words. Next m lines contain the beautiful
words p , consisting of uppercase Latin letters. Their length is from 1 to 1000. All beautiful strings are pairwise different.

Output
Print the single integer — the number of different beautiful strings the Martian can see this morning.

input
ABCBABA

2

BAAB

ABBA

Let's consider the sample test. There the Martian can get only the second beautiful string if he opens segments of eyes
a = 1, b = 2 and c = 4, d = 5 or of he opens segments of eyes a = 1, b = 2 and c = 6, d = 7.

5

i

output
1

Statement is not available on English languageStatement is not available on English language

E. Fake News (hard)
5 seconds, 256 megabytes

Now that you have proposed a fake post for the HC Facebook page, Heidi wants to measure the quality of the post
before actually posting it. She recently came across a (possibly fake) article about the impact of fractal structure on
multimedia messages and she is now trying to measure the self-similarity of the message, which is defined as

where the sum is over all nonempty strings p and is the number of occurences of p in s as a substring. (Note
that the sum is infinite, but it only has a finite number of nonzero summands.)

Heidi refuses to do anything else until she knows how to calculate this self-similarity. Could you please help her? (If you
would like to instead convince Heidi that a finite string cannot be a fractal anyway – do not bother, we have already tried.)

Input
The input starts with a line indicating the number of test cases T (1 ≤ T ≤ 10). After that, T test cases follow, each of
which consists of one line containing a string s (1 ≤ |s| ≤ 100 000) composed of lowercase letters (a-z).

Output
Output T lines, every line containing one number – the answer to the corresponding test case.

input
4

aa

abcd

ccc

abcc

A string s contains another string p as a substring if p is a contiguous subsequence of s. For example, ab is a substring
of cab but not of acb.

2

output
5

10

14

12

F. Fibonacci Suffix
1 second, 256 megabytes

Let's denote (yet again) the sequence of Fibonacci strings:

 0, 1, , where the plus sign denotes the concatenation of two strings.

Let's denote the lexicographically sorted sequence of suffixes of string as . For example, is 01101,
and is the following sequence: 01, 01101, 1, 101, 1101. Elements in this sequence are numbered from .

Your task is to print first characters of -th element of . If there are less than characters in this suffix, then
output the whole suffix.

Input
The only line of the input contains three numbers , and (,) denoting the index of the
Fibonacci string you have to consider, the index of the element of and the number of characters you have to
output, respectively.

It is guaranteed that does not exceed the length of .

Output
Output first characters of -th element of , or the whole element if its length is less than .

input
4	5	3

input
4	3	3

! (0) = ! (1) = ! (") = ! (" − 2) + ! (" − 1)
! (") #(! (")) ! (4)

#(! (4)) 1
$ % #(! (&)) $

& % $ 1 ≤ &, $ ≤ 200 1 ≤ % ≤ 1018

#(! (&))

% ! (&)

$ % #(! (&)) $

output
110

output
1

G. Speed Dial
2 seconds, 256 megabytes

Polycarp's phone book contains phone numbers, each of them is described by — the number itself and — the
number of times Polycarp dials it in daily.

Polycarp has just bought a brand new phone with an amazing speed dial feature! More precisely, buttons on it can have
a number assigned to it (not necessary from the phone book). To enter some number Polycarp can press one of these
buttons and then finish the number using usual digit buttons (entering a number with only digit buttons is also possible).

Speed dial button can only be used when no digits are entered. No button can have its number reassigned.

What is the minimal total number of digit number presses Polycarp can achieve after he assigns numbers to speed dial
buttons and enters each of the numbers from his phone book the given number of times in an optimal way?

Input
The first line contains two integers and (,) — the amount of numbers in Polycarp's phone
book and the number of speed dial buttons his new phone has.

The -th of the next lines contain a string and an integer , where is a non-empty string of digits
from to inclusive (the -th number), and is the amount of times it will be dialed, respectively.

It is guaranteed that the total length of all phone numbers will not exceed .

Output
Print a single integer — the minimal total number of digit number presses Polycarp can achieve after he assigns
numbers to speed dial buttons and enters each of the numbers from his phone book the given number of times in an
optimal way.

input
3	1

0001	5

001	4

01	1

input
3	1

0001	5

001	6

01	1

The only speed dial button in the first example should have "0001" on it. The total number of digit button presses will be
 for the first number + for the second + for the third. in total.

The only speed dial button in the second example should have "00" on it. The total number of digit button presses will be
 for the first number + for the second + for the third. in total.

& '" $"

%
%

& % 1 ≤ & ≤ 500 1 ≤ % ≤ 10

" & '" $" (1 ≤ ≤ 500)$" '"
0 9 " $"

500

output
14

output
18

0 ⋅ 5 3 ⋅ 4 2 ⋅ 1 14

2 ⋅ 5 1 ⋅ 6 2 ⋅ 1 18

3/20/19, 1)37 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/190320/problems/problems.html

15-295 Spring 2019 #8 Strings

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Dima and Text Messages
2 seconds, 256 megabytes

Seryozha has a very changeable character. This time he refused to leave the room to Dima and his girlfriend (her hame is
Inna, by the way). However, the two lovebirds can always find a way to communicate. Today they are writing text
messages to each other.

Dima and Inna are using a secret code in their text messages. When Dima wants to send Inna some sentence, he writes
out all words, inserting a heart before each word and after the last word. A heart is a sequence of two characters: the
"less" characters (<) and the digit three (3). After applying the code, a test message looks like that: <3word <3word <3
... word <3.

Encoding doesn't end here. Then Dima inserts a random number of small English characters, digits, signs "more" and
"less" into any places of the message.

Inna knows Dima perfectly well, so she knows what phrase Dima is going to send her beforehand. Inna has just got a text
message. Help her find out if Dima encoded the message correctly. In other words, find out if a text message could have
been received by encoding in the manner that is described above.

Input
The first line contains integer n (1 ≤ n ≤ 10) — the number of words in Dima's message. Next n lines contain non-
empty words, one word per line. The words only consist of small English letters. The total length of all words doesn't
exceed 10 .

The last line contains non-empty text message that Inna has got. The number of characters in the text message doesn't
exceed 10 . A text message can contain only small English letters, digits and signs more and less.

Output
In a single line, print "yes" (without the quotes), if Dima decoded the text message correctly, and "no" (without the
quotes) otherwise.

input
3

i

love

you

<3i<3love<23you<3

input
7

i

am

not

main

in

the

family

<3i<>3am<3the<3<main<3in<3the<3><3family<3

Please note that Dima got a good old kick in the pants for the second sample from the statement.

1 2
n

5

5

5

output
yes

output
no

B. Lucky Common Subsequence
3 seconds, 512 megabytes

In mathematics, a subsequence is a sequence that can be derived from another sequence by deleting some elements
without changing the order of the remaining elements. For example, the sequence BDF is a subsequence of ABCDEF. A
substring of a string is a continuous subsequence of the string. For example, BCD is a substring of ABCDEF.

You are given two strings s , s and another string called virus. Your task is to find the longest common subsequence of
s and s , such that it doesn't contain virus as a substring.

Input
The input contains three strings in three separate lines: s , s and virus (1 ≤ |s |, |s |, |virus| ≤ 100). Each string
consists only of uppercase English letters.

Output
Output the longest common subsequence of s and s without virus as a substring. If there are multiple answers, any of
them will be accepted.

If there is no valid common subsequence, output 0.

input
AJKEQSLOBSROFGZ

OVGURWZLWVLUXTH

OZ

input
AA

A

A

1 2
1 2

1 2 1 2

1 2

output
ORZ

output
0

C. Martian Strings
2 seconds, 256 megabytes

During the study of the Martians Petya clearly understood that the Martians are absolutely lazy. They like to sleep and
don't like to wake up.

Imagine a Martian who has exactly n eyes located in a row and numbered from the left to the right from 1 to n. When a
Martian sleeps, he puts a patch on each eye (so that the Martian morning doesn't wake him up). The inner side of each
patch has an uppercase Latin letter. So, when a Martian wakes up and opens all his eyes he sees a string s consisting of
uppercase Latin letters. The string's length is n.

"Ding dong!" — the alarm goes off. A Martian has already woken up but he hasn't opened any of his eyes. He feels that
today is going to be a hard day, so he wants to open his eyes and see something good. The Martian considers only m
Martian words beautiful. Besides, it is hard for him to open all eyes at once so early in the morning. So he opens two non-
overlapping segments of consecutive eyes. More formally, the Martian chooses four numbers a, b, c, d,
(1 ≤ a ≤ b < c ≤ d ≤ n) and opens all eyes with numbers i such that a ≤ i ≤ b or c ≤ i ≤ d. After the Martian opens the
eyes he needs, he reads all the visible characters from the left to the right and thus, he sees some word.

Let's consider all different words the Martian can see in the morning. Your task is to find out how many beautiful words
are among them.

Input
The first line contains a non-empty string s consisting of uppercase Latin letters. The strings' length is n (2 ≤ n ≤ 10).
The second line contains an integer m (1 ≤ m ≤ 100) — the number of beautiful words. Next m lines contain the beautiful
words p , consisting of uppercase Latin letters. Their length is from 1 to 1000. All beautiful strings are pairwise different.

Output
Print the single integer — the number of different beautiful strings the Martian can see this morning.

input
ABCBABA

2

BAAB

ABBA

Let's consider the sample test. There the Martian can get only the second beautiful string if he opens segments of eyes
a = 1, b = 2 and c = 4, d = 5 or of he opens segments of eyes a = 1, b = 2 and c = 6, d = 7.

5

i

output
1

Statement is not available on English languageStatement is not available on English language

E. Fake News (hard)
5 seconds, 256 megabytes

Now that you have proposed a fake post for the HC Facebook page, Heidi wants to measure the quality of the post
before actually posting it. She recently came across a (possibly fake) article about the impact of fractal structure on
multimedia messages and she is now trying to measure the self-similarity of the message, which is defined as

where the sum is over all nonempty strings p and is the number of occurences of p in s as a substring. (Note
that the sum is infinite, but it only has a finite number of nonzero summands.)

Heidi refuses to do anything else until she knows how to calculate this self-similarity. Could you please help her? (If you
would like to instead convince Heidi that a finite string cannot be a fractal anyway – do not bother, we have already tried.)

Input
The input starts with a line indicating the number of test cases T (1 ≤ T ≤ 10). After that, T test cases follow, each of
which consists of one line containing a string s (1 ≤ |s| ≤ 100 000) composed of lowercase letters (a-z).

Output
Output T lines, every line containing one number – the answer to the corresponding test case.

input
4

aa

abcd

ccc

abcc

A string s contains another string p as a substring if p is a contiguous subsequence of s. For example, ab is a substring
of cab but not of acb.

2

output
5

10

14

12

F. Fibonacci Suffix
1 second, 256 megabytes

Let's denote (yet again) the sequence of Fibonacci strings:

 0, 1, , where the plus sign denotes the concatenation of two strings.

Let's denote the lexicographically sorted sequence of suffixes of string as . For example, is 01101,
and is the following sequence: 01, 01101, 1, 101, 1101. Elements in this sequence are numbered from .

Your task is to print first characters of -th element of . If there are less than characters in this suffix, then
output the whole suffix.

Input
The only line of the input contains three numbers , and (,) denoting the index of the
Fibonacci string you have to consider, the index of the element of and the number of characters you have to
output, respectively.

It is guaranteed that does not exceed the length of .

Output
Output first characters of -th element of , or the whole element if its length is less than .

input
4	5	3

input
4	3	3

! (0) = ! (1) = ! (") = ! (" − 2) + ! (" − 1)
! (") #(! (")) ! (4)

#(! (4)) 1
$ % #(! (&)) $

& % $ 1 ≤ &, $ ≤ 200 1 ≤ % ≤ 1018

#(! (&))

% ! (&)

$ % #(! (&)) $

output
110

output
1

G. Speed Dial
2 seconds, 256 megabytes

Polycarp's phone book contains phone numbers, each of them is described by — the number itself and — the
number of times Polycarp dials it in daily.

Polycarp has just bought a brand new phone with an amazing speed dial feature! More precisely, buttons on it can have
a number assigned to it (not necessary from the phone book). To enter some number Polycarp can press one of these
buttons and then finish the number using usual digit buttons (entering a number with only digit buttons is also possible).

Speed dial button can only be used when no digits are entered. No button can have its number reassigned.

What is the minimal total number of digit number presses Polycarp can achieve after he assigns numbers to speed dial
buttons and enters each of the numbers from his phone book the given number of times in an optimal way?

Input
The first line contains two integers and (,) — the amount of numbers in Polycarp's phone
book and the number of speed dial buttons his new phone has.

The -th of the next lines contain a string and an integer , where is a non-empty string of digits
from to inclusive (the -th number), and is the amount of times it will be dialed, respectively.

It is guaranteed that the total length of all phone numbers will not exceed .

Output
Print a single integer — the minimal total number of digit number presses Polycarp can achieve after he assigns
numbers to speed dial buttons and enters each of the numbers from his phone book the given number of times in an
optimal way.

input
3	1

0001	5

001	4

01	1

input
3	1

0001	5

001	6

01	1

The only speed dial button in the first example should have "0001" on it. The total number of digit button presses will be
 for the first number + for the second + for the third. in total.

The only speed dial button in the second example should have "00" on it. The total number of digit button presses will be
 for the first number + for the second + for the third. in total.

& '" $"

%
%

& % 1 ≤ & ≤ 500 1 ≤ % ≤ 10

" & '" $" (1 ≤ ≤ 500)$" '"
0 9 " $"

500

output
14

output
18

0 ⋅ 5 3 ⋅ 4 2 ⋅ 1 14

2 ⋅ 5 1 ⋅ 6 2 ⋅ 1 18

3/20/19, 1)37 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/190320/problems/problems.html

15-295 Spring 2019 #8 Strings

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Dima and Text Messages
2 seconds, 256 megabytes

Seryozha has a very changeable character. This time he refused to leave the room to Dima and his girlfriend (her hame is
Inna, by the way). However, the two lovebirds can always find a way to communicate. Today they are writing text
messages to each other.

Dima and Inna are using a secret code in their text messages. When Dima wants to send Inna some sentence, he writes
out all words, inserting a heart before each word and after the last word. A heart is a sequence of two characters: the
"less" characters (<) and the digit three (3). After applying the code, a test message looks like that: <3word <3word <3
... word <3.

Encoding doesn't end here. Then Dima inserts a random number of small English characters, digits, signs "more" and
"less" into any places of the message.

Inna knows Dima perfectly well, so she knows what phrase Dima is going to send her beforehand. Inna has just got a text
message. Help her find out if Dima encoded the message correctly. In other words, find out if a text message could have
been received by encoding in the manner that is described above.

Input
The first line contains integer n (1 ≤ n ≤ 10) — the number of words in Dima's message. Next n lines contain non-
empty words, one word per line. The words only consist of small English letters. The total length of all words doesn't
exceed 10 .

The last line contains non-empty text message that Inna has got. The number of characters in the text message doesn't
exceed 10 . A text message can contain only small English letters, digits and signs more and less.

Output
In a single line, print "yes" (without the quotes), if Dima decoded the text message correctly, and "no" (without the
quotes) otherwise.

input
3

i

love

you

<3i<3love<23you<3

input
7

i

am

not

main

in

the

family

<3i<>3am<3the<3<main<3in<3the<3><3family<3

Please note that Dima got a good old kick in the pants for the second sample from the statement.

1 2
n

5

5

5

output
yes

output
no

B. Lucky Common Subsequence
3 seconds, 512 megabytes

In mathematics, a subsequence is a sequence that can be derived from another sequence by deleting some elements
without changing the order of the remaining elements. For example, the sequence BDF is a subsequence of ABCDEF. A
substring of a string is a continuous subsequence of the string. For example, BCD is a substring of ABCDEF.

You are given two strings s , s and another string called virus. Your task is to find the longest common subsequence of
s and s , such that it doesn't contain virus as a substring.

Input
The input contains three strings in three separate lines: s , s and virus (1 ≤ |s |, |s |, |virus| ≤ 100). Each string
consists only of uppercase English letters.

Output
Output the longest common subsequence of s and s without virus as a substring. If there are multiple answers, any of
them will be accepted.

If there is no valid common subsequence, output 0.

input
AJKEQSLOBSROFGZ

OVGURWZLWVLUXTH

OZ

input
AA

A

A

1 2
1 2

1 2 1 2

1 2

output
ORZ

output
0

C. Martian Strings
2 seconds, 256 megabytes

During the study of the Martians Petya clearly understood that the Martians are absolutely lazy. They like to sleep and
don't like to wake up.

Imagine a Martian who has exactly n eyes located in a row and numbered from the left to the right from 1 to n. When a
Martian sleeps, he puts a patch on each eye (so that the Martian morning doesn't wake him up). The inner side of each
patch has an uppercase Latin letter. So, when a Martian wakes up and opens all his eyes he sees a string s consisting of
uppercase Latin letters. The string's length is n.

"Ding dong!" — the alarm goes off. A Martian has already woken up but he hasn't opened any of his eyes. He feels that
today is going to be a hard day, so he wants to open his eyes and see something good. The Martian considers only m
Martian words beautiful. Besides, it is hard for him to open all eyes at once so early in the morning. So he opens two non-
overlapping segments of consecutive eyes. More formally, the Martian chooses four numbers a, b, c, d,
(1 ≤ a ≤ b < c ≤ d ≤ n) and opens all eyes with numbers i such that a ≤ i ≤ b or c ≤ i ≤ d. After the Martian opens the
eyes he needs, he reads all the visible characters from the left to the right and thus, he sees some word.

Let's consider all different words the Martian can see in the morning. Your task is to find out how many beautiful words
are among them.

Input
The first line contains a non-empty string s consisting of uppercase Latin letters. The strings' length is n (2 ≤ n ≤ 10).
The second line contains an integer m (1 ≤ m ≤ 100) — the number of beautiful words. Next m lines contain the beautiful
words p , consisting of uppercase Latin letters. Their length is from 1 to 1000. All beautiful strings are pairwise different.

Output
Print the single integer — the number of different beautiful strings the Martian can see this morning.

input
ABCBABA

2

BAAB

ABBA

Let's consider the sample test. There the Martian can get only the second beautiful string if he opens segments of eyes
a = 1, b = 2 and c = 4, d = 5 or of he opens segments of eyes a = 1, b = 2 and c = 6, d = 7.

5

i

output
1

Statement is not available on English languageStatement is not available on English language

E. Fake News (hard)
5 seconds, 256 megabytes

Now that you have proposed a fake post for the HC Facebook page, Heidi wants to measure the quality of the post
before actually posting it. She recently came across a (possibly fake) article about the impact of fractal structure on
multimedia messages and she is now trying to measure the self-similarity of the message, which is defined as

where the sum is over all nonempty strings p and is the number of occurences of p in s as a substring. (Note
that the sum is infinite, but it only has a finite number of nonzero summands.)

Heidi refuses to do anything else until she knows how to calculate this self-similarity. Could you please help her? (If you
would like to instead convince Heidi that a finite string cannot be a fractal anyway – do not bother, we have already tried.)

Input
The input starts with a line indicating the number of test cases T (1 ≤ T ≤ 10). After that, T test cases follow, each of
which consists of one line containing a string s (1 ≤ |s| ≤ 100 000) composed of lowercase letters (a-z).

Output
Output T lines, every line containing one number – the answer to the corresponding test case.

input
4

aa

abcd

ccc

abcc

A string s contains another string p as a substring if p is a contiguous subsequence of s. For example, ab is a substring
of cab but not of acb.

2

output
5

10

14

12

F. Fibonacci Suffix
1 second, 256 megabytes

Let's denote (yet again) the sequence of Fibonacci strings:

 0, 1, , where the plus sign denotes the concatenation of two strings.

Let's denote the lexicographically sorted sequence of suffixes of string as . For example, is 01101,
and is the following sequence: 01, 01101, 1, 101, 1101. Elements in this sequence are numbered from .

Your task is to print first characters of -th element of . If there are less than characters in this suffix, then
output the whole suffix.

Input
The only line of the input contains three numbers , and (,) denoting the index of the
Fibonacci string you have to consider, the index of the element of and the number of characters you have to
output, respectively.

It is guaranteed that does not exceed the length of .

Output
Output first characters of -th element of , or the whole element if its length is less than .

input
4	5	3

input
4	3	3

! (0) = ! (1) = ! (") = ! (" − 2) + ! (" − 1)
! (") #(! (")) ! (4)

#(! (4)) 1
$ % #(! (&)) $

& % $ 1 ≤ &, $ ≤ 200 1 ≤ % ≤ 1018

#(! (&))

% ! (&)

$ % #(! (&)) $

output
110

output
1

G. Speed Dial
2 seconds, 256 megabytes

Polycarp's phone book contains phone numbers, each of them is described by — the number itself and — the
number of times Polycarp dials it in daily.

Polycarp has just bought a brand new phone with an amazing speed dial feature! More precisely, buttons on it can have
a number assigned to it (not necessary from the phone book). To enter some number Polycarp can press one of these
buttons and then finish the number using usual digit buttons (entering a number with only digit buttons is also possible).

Speed dial button can only be used when no digits are entered. No button can have its number reassigned.

What is the minimal total number of digit number presses Polycarp can achieve after he assigns numbers to speed dial
buttons and enters each of the numbers from his phone book the given number of times in an optimal way?

Input
The first line contains two integers and (,) — the amount of numbers in Polycarp's phone
book and the number of speed dial buttons his new phone has.

The -th of the next lines contain a string and an integer , where is a non-empty string of digits
from to inclusive (the -th number), and is the amount of times it will be dialed, respectively.

It is guaranteed that the total length of all phone numbers will not exceed .

Output
Print a single integer — the minimal total number of digit number presses Polycarp can achieve after he assigns
numbers to speed dial buttons and enters each of the numbers from his phone book the given number of times in an
optimal way.

input
3	1

0001	5

001	4

01	1

input
3	1

0001	5

001	6

01	1

The only speed dial button in the first example should have "0001" on it. The total number of digit button presses will be
 for the first number + for the second + for the third. in total.

The only speed dial button in the second example should have "00" on it. The total number of digit button presses will be
 for the first number + for the second + for the third. in total.

& '" $"

%
%

& % 1 ≤ & ≤ 500 1 ≤ % ≤ 10

" & '" $" (1 ≤ ≤ 500)$" '"
0 9 " $"

500

output
14

output
18

0 ⋅ 5 3 ⋅ 4 2 ⋅ 1 14

2 ⋅ 5 1 ⋅ 6 2 ⋅ 1 18

