Problem A

Rearranging a Sequence

Input: Standard Input
Time Limit: 2 seconds

You are given an ordered sequence of integers, (1,2,3,...,n). Then, a number of requests will
be given. Each request specifies an integer in the sequence. You need to move the specified
integer to the head of the sequence, leaving the order of the rest untouched. Your task is to find
the order of the elements in the sequence after following all the requests successively.

Input
The input consists of a single test case of the following form.

nm
€1

€m

The integer n is the length of the sequence (1 < n < 200000). The integer m is the number
of requests (1 < m < 100000). The following m lines are the requests, namely eq, ..., €, one
per line. Each request e; (1 < ¢ < m) is an integer between 1 and n, inclusive, designating the
element to move. Note that, the integers designate the integers themselves to move, not their
positions in the sequence.

Output

Output the sequence after processing all the requests. Its elements are to be output, one per
line, in the order in the sequence.

Sample Input 1 Sample Output 1
53 5
4 2
2 4
5 1
3




Sample Input 2 Sample Output 2

10 8 3
1 1
4 10
7 4
3 7
4 2
10 5
1 6
3 8
9

In Sample Input 1, the initial sequence is (1,2,3,4,5). The first request is to move the integer
4 to the head, that is, to change the sequence to (4,1,2,3,5). The next request to move the
integer 2 to the head makes the sequence (2,4, 1,3,5). Finally, 5 is moved to the head, resulting
in (5,2,4,1,3).



Problem B

Distribution Center

Input: Standard Input
Time Limit: 3 seconds

The factory of the Impractically Complicated Products Corporation has many manufacturing
lines and the same number of corresponding storage rooms. The same number of conveyor lanes
are laid out in parallel to transfer goods from manufacturing lines directly to the corresponding
storage rooms. Now, they plan to install a number of robot arms here and there between pairs
of adjacent conveyor lanes so that goods in one of the lanes can be picked up and released down
on the other, and also in the opposite way. This should allow mixing up goods from different
manufacturing lines to the storage rooms.

Depending on the positions of robot arms, the goods from each of the manufacturing lines can
only be delivered to some of the storage rooms. Your task is to find the number of manufacturing
lines from which goods can be transferred to each of the storage rooms, given the number of
conveyor lanes and positions of robot arms.

Input

The input consists of a single test case, formatted as follows.

nm
I1 Y

Tm Ym

An integer n (2 < n < 200000) in the first line is the number of conveyor lanes. The lanes are
numbered from 1 to n, and two lanes with their numbers differing with 1 are adjacent. All of them
start from the position = 0 and end at x = 100000. The other integer m (1 < m < 100000) is
the number of robot arms.

The following m lines indicate the positions of the robot arms by two integers z; (0 < z; <
100000) and y; (1 < y; < n). Here, x; is the z-coordinate of the i-th robot arm, which can pick
goods on either the lane y; or the lane y; + 1 at position z = z;, and then release them on the
other at the same z-coordinate.

You can assume that positions of no two robot arms have the same z-coordinate, that is, x; # z;
for any i # j.



(¢

lane 1 R

: P §§
= 0
oD lane 2 (¢ %
A= S
;5 ~
: s §§ :
”g lane 3 (¢ jé
= n

e N

lane 4 S

(S

Figure C.1. Illustration of Sample Input 1
Output

Output n integers separated by a space in one line. The i-th integer is the number of the
manufacturing lines from which the storage room connected to the conveyor lane i can accept
goods.

Sample Input 1 Sample Output 1
4 3 2344

1000 1

2000 2

3000 3

Sample Input 2 Sample Output 2
4 3 2 4 4 2

N W =
wWw N -




Problem (C

Hidden Anagrams

Input: Standard Input
Time Limit: 10 seconds

An anagram is a word or a phrase that is formed by rearranging the letters of another. For
instance, by rearranging the letters of “William Shakespeare,” we can have its anagrams “I am
a weakish speller,” “I’ll make a wise phrase,” and so on. Note that when A is an anagram of B,
B is an anagram of A.

In the above examples, differences in letter cases are ignored, and word spaces and punctuation
symbols are freely inserted and/or removed. These rules are common but not applied here; only
exact matching of the letters is considered.

For two strings s; and s9 of letters, if a substring s} of s1 is an anagram of a substring s}, of s,
we call s} a hidden anagram of the two strings, s; and so. Of course, s, is also a hidden anagram
of them.

Your task is to write a program that, for given two strings, computes the length of the longest
hidden anagrams of them.

Suppose, for instance, that “anagram” and “grandmother” are given. Their substrings “nagr”
and “gran” are hidden anagrams since by moving letters you can have one from the other. They
are the longest since any substrings of “grandmother” of lengths five or more must contain
“d” or “o” that “anagram” does not. In this case, therefore, the length of the longest hidden
anagrams is four. Note that a substring must be a sequence of letters occurring consecutively in
the original string and so “nagrm” and “granm” are not hidden anagrams.

Input

The input consists of a single test case in two lines.

51
52

s1 and s9 are strings consisting of lowercase letters (a through z) and their lengths are between
1 and 4000, inclusive.



Output

Output the length of the longest hidden anagrams of s; and so. If there are no hidden anagrams,

print a zero.

Sample Input 1

Sample Output 1

anagram
grandmother

4

Sample Input 2

Sample Output 2

williamshakespeare
iamaweakishspeller

18

Sample Input 3

Sample Output 3

aaaaaaaabbbbbbbb
xxxxxabababxxxxxabab

6

Sample Input 4

Sample Output 4

abababacdcdcd
efefefghghghghgh

0




Problem D

Placing Medals on a Binary Tree

Input: Standard Input
Time Limit: 4 seconds

You have drawn a chart of a perfect binary tree, like one shown in Figure G.1. The figure
shows a finite tree, but, if needed, you can add more nodes beneath the leaves, making the tree
arbitrarily deeper.

Figure G.1. A Perfect Binary Tree Chart

Tree nodes are associated with their depths, defined recursively. The root has the depth of zero,
and the child nodes of a node of depth d have their depths d + 1.

You also have a pile of a certain number of medals, each engraved with some number. You want
to know whether the medals can be placed on the tree chart satisfying the following conditions.

e A medal engraved with d should be on a node of depth d.
e One tree node can accommodate at most one medal.

e The path to the root from a node with a medal should not pass through another node
with a medal.

You have to place medals satisfying the above conditions, one by one, starting from the top of
the pile down to its bottom. If there exists no placement of a medal satisfying the conditions,
you have to throw it away and simply proceed to the next medal.

You may have choices to place medals on different nodes. You want to find the best placement.
When there are two or more placements satisfying the rule, one that places a medal upper in
the pile is better. For example, when there are two placements of four medal, one that places
only the top and the 2nd medal, and the other that places the top, the 3rd, and the 4th medal,
the former is better.

In Sample Input 1, you have a pile of six medals engraved with 2, 3, 1, 1, 4, and 2 again
respectively, from top to bottom.



e The first medal engraved with 2 can be placed, as shown in Figure G.2 (A).
e Then the second medal engraved with 3 may be placed , as shown in Figure G.2 (B).

e The third medal engraved with 1 cannot be placed if the second medal were placed as
stated above, because both of the two nodes of depth 1 are along the path to the root
from nodes already with a medal. Replacing the second medal satisfying the placement
conditions, however, enables a placement shown in Figure G.2 (C).

e The fourth medal, again engraved with 1, cannot be placed with any replacements of the
three medals already placed satisfying the conditions. This medal is thus thrown away.

e The fifth medal engraved with 4 can be placed as shown in of Figure G.2 (D).

e The last medal engraved with 2 cannot be placed on any of the nodes with whatever
replacements.

(A)

Figure G.2. Medal Placements

Input

The input consists of a single test case in the format below.

n
I

Tn

The first line has n, an integer representing the number of medals (1 < n < 5 x 10%). The
following n lines represent the positive integers engraved on the medals. The ¢-th line of which
has an integer z; (1 < x; < 109) engraved on the i-th medal of the pile from the top.



Output

When the best placement is chosen, for each i from 1 through n, output Yes in a line if the i-th
medal is placed; otherwise, output No in a line.

Sample Input 1 Sample Output 1

Yes
Yes
Yes
No
Yes
No

N PR, PP OWONNO®

Sample Input 2 Sample Output 2

[
o

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No

ORI SO N O O O N TN




Problem E

Animal Companion in Maze

Input: Standard Input
Time Limit: 2 seconds

George, your pet monkey, has escaped, slipping the leash!

George is hopping around in a maze-like building with many rooms. The doors of the rooms, if
any, lead directly to an adjacent room, not through corridors. Some of the doors, however, are
one-way: they can be opened only from one of their two sides.

He repeats randomly picking a door he can open and moving to the room through it. You are
chasing him but he is so quick that you cannot catch him easily. He never returns immediately
to the room he just has come from through the same door, believing that you are behind him. If
any other doors lead to the room he has just left, however, he may pick that door and go back.

If he cannot open any doors except one through which he came from, voila, you can catch him
there eventually.

You know how rooms of the building are connected with doors, but you don’t know in which
room George currently is.

It takes one unit of time for George to move to an adjacent room through a door.

Write a program that computes how long it may take before George will be confined in a room.
You have to find the longest time, considering all the possibilities of the room George is in
initially, and all the possibilities of his choices of doors to go through.

Note that, depending on the room organization, George may have possibilities to continue
hopping around forever without being caught.

Doors may be on the ceilings or the floors of rooms; the connection of the rooms may not be
drawn as a planar graph.

Input

The input consists of a single test case, in the following format.

nm
T1 Y1 w1

Tm Ym Wm



The first line contains two integers n (2 < n < 100000) and m (1 < m < 100000), the number
of rooms and doors, respectively. Next m lines contain the information of doors. The i-th line
of these contains three integers x;, y; and w; (1 < z; < n,1 <y; < n, z; # y;, w; =1 or 2),
meaning that the i-th door connects two rooms numbered z; and y;, and it is one-way from x;
to y; if w; = 1, two-way if w; = 2.

Output

Output the maximum number of time units after which George will be confined in a room. If
George has possibilities to continue hopping around forever, output “Infinite”.

Sample Input 1 Sample Output 1
21 1

122

Sample Input 2 Sample Output 2
2 2 Infinite

121

211

Sample Input 3 Sample Output 3
6 7 4

132

321

351

362

4 31

461

521

Sample Input 4 Sample Output 4
32 1

131
131




Problem F
Black and White Boxes

Input: Standard Input
Time Limit: 2 seconds

Alice and Bob play the following game.

1. There are a number of straight piles of boxes. The boxes have the same size and are
painted either black or white.

2. Two players, namely Alice and Bob, take their turns alternately. Who to play first is
decided by a fair random draw.

3. In Alice’s turn, she selects a black box in one of the piles, and removes the box together
with all the boxes above it, if any. If no black box to remove is left, she loses the game.

4. In Bob’s turn, he selects a white box in one of the piles, and removes the box together
with all the boxes above it, if any. If no white box to remove is left, he loses the game.

Given an initial configuration of piles and who plays first, the game is a definite perfect infor-
mation game. In such a game, one of the players has sure win provided he or she plays best.
The draw for the first player, thus, essentially decides the winner.

In fact, this seemingly boring property is common with many popular games, such as chess. The
chess game, however, is complicated enough to prevent thorough analyses, even by supercom-
puters, which leaves us rooms to enjoy playing.

This game of box piles, however, is not as complicated. The best plays may be more easily
found. Thus, initial configurations should be fair, that is, giving both players chances to win. A
configuration in which one player can always win, regardless of who plays first, is undesirable.

You are asked to arrange an initial configuration for this game by picking a number of piles from
the given candidate set. As more complicated configuration makes the game more enjoyable,
you are expected to find the configuration with the maximum number of boxes among fair ones.



Input

The input consists of a single test case, formatted as follows.

b1
Pn

A positive integer n (< 40) is the number of candidate piles. Each p; is a string of characters B
and W, representing the ¢-th candidate pile. B and W mean black and white boxes, respectively.
They appear in the order in the pile, from bottom to top. The number of boxes in a candidate
pile does not exceed 40.

Output

Output in a line the maximum possible number of boxes in a fair initial configuration consisting
of some of the candidate piles. If only the empty configuration is fair, output a zero.

Sample Input 1 Sample Output 1

4 5
B
W
WB
WB

Sample Input 2 Sample Output 2

6 10
B

W
WB
WB
BWW
BWW




