
15-451/651 Algorithms, Fall 2021
Recitation #4 Worksheet

Recap of this week’s lectures:

• Picking a random prime, and the density of primes

• String equality testing and Karp-Rabin Fingerprinting

• Dynamic Programming

Fingerprinting

A String Matching Oracle: In this recitation we generalize the fingerprinting method
described in lecture. Let T = t0, t1, . . . , tn−1, be a string over some alphabet Σ = {0, 1, . . . , z−
1}. Let Ti,j denote the substring ti, ti+1, . . . , tj−1. This string is of length j − i. We want to
preprocess T such that the following comparison of two substrings of T of length ` can be
answered (with a low probability of a false positive) in constant time:

Test if Ti,i+` = Tj,j+`

First of all let’s define the fingerprinting function. Let p be a prime, along with a base b
(larger than the alphabet size). The Karp-Rabin fingerprint of T is

h(T ) = (t0b
n−1 + t1b

n−2 + · · ·+ tn−1b
0) mod p

From now on we will omit the mod p from these expressions.

Now, to preprocess the string T , we will compute the following arrays for 0 ≤ i ≤ n:
(Don’t forget we are omitting the mods! )

r[i] = bi

a[i] = t0b
i−1 + t1b

i−2 + · · ·+ ti−1b
0

Give algorithms for computing these in time O(n):

Solution:

r[i] =

{
1 if i = 0
r[i− 1] ∗ b otherwise

a[i] =

{
0 if i = 0
a[i− 1] ∗ b + ti−1 otherwise

1



Notice that
h(Ti,j) = a[j]− a[i] · r[j − i]

Prove that this is the correct expression.

Solution:

a[j] = t0b
j−1 + t1b

j−2 + · · ·+ ti−1b
j−i + tib

j−i−1 + · · ·+ tj−1b
0

= a[i] · bj−i + h(Ti,j)

So the end result is that we can test if Ti,i+` = Tj,j+` by comparing h(Ti,i+`) with h(Tj,j+`).
The probability of a false positive can be made as small as desired by picking a sufficiently
large random prime p, as seen in lecture. (Here we are not concerned with bounding the
false positive probability.)

Extension to string comparison: Suppose we want to know not just if Ti,i+` equals Tj,j+`,
but we want to know the result of comparing these two strings. (That is we want to know
if the first is less, equal to, or greater than the second.)

Give an algorithm to do this that runs in O(log `) time:

Solution: Do a binary search to find the smallest k in 0 ≤ k ≤ ` where Ti,i+k and Tj,j+k differ.
Return the result of the comparison ti+k : tj+k.

Implementation notes:

• When implementing these algorithms it’s important to understand the difference be-
tween the mathematical mod operator and the “%”, or the “mod” operator that appears
in many programming languages. Usually (e.g. in C, C++, Java, Ocaml,...) the value
of “a % b” has the same sign as a. e.g. (-3) % 5 is -3, but using the mathematical
mod , as we are using in these notes, (−3) mod 5 = 2. You must take this into account,
or your code will not work.

• The mod operator must be applied often enough so as to guarantee that no overflow
occurs. For example if you’re computing

(∑1000
i=0 fi ∗ gi

)
mod p. Say you’re working

in 64-bit signed arithmetic. If the fi and gi are up to, say, 109, then this sum will
probably overflow the available 64 bits. So what you have to do is take the mod after
adding each fi ∗ gi term into the summation.

• The danger of false positives increases with the increased number of tests being done.
So be aware that this must be considered in any deployment of these algorithms. One
way to mitigate the effect of false positives is to compute the hash function two or
more times using different primes in place of p, or different base values in place of b.
Another way is to judiciously check tests that return “equal” to guarantee that the
overall algorithm is computing the correct result. (I am not aware of how to do this
efficiently in the case of the comparison algorithm described here.)

2



Palindromes: Given an alphabet Σ, call a string s ∈ Σ∗ with |s| ≥ 1 an almost-palindrome
if there exists some s′ ∈ Σ∗ with |s| = |s′| such that s and s′ differ in at most one character.
For example, “bad” is an almost-palindrome because it is a palindrome if we change the b to
a d and “racecar” is an almost-palindrome because it is itself a palindrome. However, “abc”
is not an almost-palindrome because it would take at least two character changes to make
it into a palindrome.

Given a text T ∈ Σn represented as an array of characters, devise an algorithm to count
the number of substrings of T that are almost-palindromes in O(n log n) time. (Hint: Karp-
Rabin fingerprinting!)

Solution: Using the fingerprinting approach discussed in the previous question, we can perform
an O(n) preprocessing step (namely, computing the rolling hash) after which we may obtain a
hash value for Ti,j in O(1) time. Moreover, note that the same holds for the reversed text (let’s
denote this TR). This means that given any indices 0 ≤ i ≤ j < n, we can obtain hash values
for both Ti,j and (Ti,j)

R = TR
n−1−j,n−1−i.

Let us first consider odd-length almost-palindromes. Observe that every such palindrome has a
center character. Our approach, then, is to count the number of almost-palindromes with centers
at each index. Given that the palindrome is centered at some index i, we proceed by conducting
a binary search using our hash values to find the least k such that Ti−k,i does not equal (Ti,i+k)R.
Then we can say that T [i−k] will be the (at most one) error in our almost-palindromes centered
at i, since we can set T [i − k] = T [i + k] to maintain the palindrome property. Finally, we do
another binary search to find the greatest j such that Ti−k−1−j,i−k−1 equals (Ti+k+1,i+k+1+j)

R.
Then there are k + j + 1 almost-palindromes centered at index i; the first k have no errors, and
the subsequent j + 1 have only T [i− k] 6= T [i + k].

The idea is similar for even-length palindromes; we leave it as an exercise to work out the details.

As every palindrome has a distinct center, we can perform this for each of the n possible centers
of the palindrome and add the results. The time complexity of the entire algorithm is then n
centers times O(log n) cost for each center, plus the one-time O(n) cost to compute the a and
r arrays necessary for arbitrary Ti,j hashes, which is O(n log n) in total.

Note that the error is almost one-sided. i.e. if a string is not an almost palindrome, the algorithm
may count it as a palindrome due to collisions. It a string is a palindrome with 1 error, the
algorithm may take it as a palindrome, and count it as a substring of an almost palindrome.
However, it’s not possible to completely miss the pattern in the count. If it is given that the
length and number of almost palindromes is much less than n (i.e. the pattern is sparse),
we could convert the Monte Carlo algorithm (incorrect with small probability) to a Las Vegas
algorithm (guaranteed correctness with randomized runtime). At the end of each iteration, we
check verify each almost-palindrome that the algorithm finds, and terminates the program only
if all the almost-palindromes are correct. The expected number of iterations it takes to get a
correct count is constant (Use geometric random variables).

3



Dynamic Programming

Matrix: You are given a positive integer N and a 26 by 26 matrix A whose entries are either
0 or 1. How many strings of length N , consisting of lowercase English letters, are there such
that for all 1 ≤ i, j ≤ 26 where Aij = 0, character j does not appear directly after character
i? Give a dynamic programming solution that runs in O(N) time.

Solution:

Let DP [n][c] be the number of valid strings of length n, ending with character c. Then DP [1][c] =
1 for all c, and for all n > 1, for all c,

DP [n][c] =
∑

k,A[k][c]=1

DP [n− 1][k]

Here we are casing on the (n − 1)th character of the string. Finally the answer is the sum of
the values in the row DP [N ]. There are 26N DP states, each of which takes constant time to
calculate.

Bonus: Modify the above algorithm to achieve a complexity of O(logN) time.

Solution: Imagine that the entire DP table has been calculated as in part (a), and imagine
each row of the DP table as a vector of length 26. For example, DP [1] is a vector of 26 ones.
Observe that for all n, each entry in DP [n] is a linear combination of values in DP [n− 1]. Also
the transition rules do not change as n increases; DP [i][c] is a linear combination of elements in
DP [i− 1], and DP [i + 100][c] is the exact same linear combination of elements in DP [i + 99]!
Thus intuitively there should be a matrix M such that for all n, DP [n− 1] ·M = DP [n].

So fix an arbitrary n. We want to find a 26 by 26 matrix M such that DP [n− 1] ·M = DP [n].
For all c, by the definition of matrix multiplication, DP [n][c] =

∑26
k=1DP [i − 1][k]M [k][c]. So

if M = A, we get DP [n][c] =
∑26

k=1,A[k][c]=1 DP [n− 1][k], which exactly matches the definition

of DP [n][c]! Since c was arbitrarily chosen, A is the matrix we were looking for.

Thus for all n, DP [n − 1] · A = DP [n]. We can easily get the answer from DP [N ], and
DP [N ] = DP [1] · AN−1. So using fast matrix exponentiation, we can compute DP [N ],

4



without computing all the intermediate rows 2 through N − 1 in the DP table. This takes
O(263 logN) ⊆ O(logN) time using naive matrix multiplication.

5



Bin-Packing: You are given a collection of n items, and each item has size si ∈ [0, 1]. You
have many bins, each of unit size, and you want to pack the n items into as few bins as
possible. (Each bin can take a subset of items, whose total size is at most 1.)

Show that you can solve this problem in time O(4n). Then improve this bound to O(3n).

Solution:

Define DP (X) to be the minimum number of bins needed to pack X, an arbitrary non-empty
subset of the items. Here is the recurrence for DP () :

DP (X) =


1 if X can be packed into one bin

min
Y⊂X, Y 6=X, Y 6=∅

DP (Y ) + DP (X \ Y ) otherwise

The runtime is O(3n), because
∑

A⊆[1,2,...,n]
∑

B⊆A 1 = 3n. You can show this by bijecting
iterations of the inner loop to base 3 strings of length n. The bijection represents each element
in [1, 2, . . . , n] as a digit in the string. For each element, its digit is 2 if it’s in B, 1 if it’s in
A \B, and 0 otherwise.

In practice, to loop over all nonempty subsets of a subset A, consider

for(int B = A; B > 0; B = (B - 1) & A)

Bonus: solve bin packing in O(n2n) time.

Solution:

For all subsets S of the items, define DP (S) as the minimum number of bins to hold S, and
R(S) to be, out of all ways to pack S into DP (S) bins, the maximum possible remaining space
in a single bin. Now clearly

DP (S) = min
i∈S

(
DP (S \ i) +

{
0 si ≤ R(S \ i)
1 otherwise

)
and you can convince yourself that

R(S) = max
i∈S

({
R(S \ i)− si si ≤ R(S \ i)
1− si otherwise

)

6



where i ranges only over i that were optimal in the computation of DP (S).

Separate explanation by Danny Sleator:

There’s the standard subset DP for this problem that runs in O(3n) However there’s an O(n2n)
algorithm, explained here.

What you do is keep track of two things for a given subset s of weights: (1) the minimum number
of bins possible for this subset b(s), and (2) among all solutions that use b(s) bins keep how
much stuff is in the minimally used bin, call it u(s).

Now consider the sets in topological (increasing order). To process a set s, consider each of its
elements e one at a time. Remove e from s and look this up in the table. Try to fit e into the
most-empty bin. If it does fit, put it there. If it does not fit then start a new bin. Keep the best
values of b(s) and u(s) over all e.

Naively you might think that the u() values would be computed incorrectly because that bin you
put e into might not be the least filled bin among all bins in that solution. But if that is the
case then there is some other ordering of insertion where the least filled bin IS last. This will be
considered when some other element of s is considered.

Okay, maybe this way of looking at it is more convincing. Consider the optimal solution for set s.
Order the bins such that the very last bin is the one which is least full. Assume for the moment
that this last bin has more than one item in it, and call one of the items x. Now if we remove x
from s, to create s′, and look this solution in our DP table, it can be no better than the one just
produced by removing x from the solution of s. This is because if there were another solution for
s′ with more empty space in its most empty bin we could put x in that one and create a better
solution for s. The same argument shows that s′ cannot use fewer bins than s. (The case when
the most empty bin for s contains one element is easy to work out in this context.)

This algorithm is implicitly considering all of the n! orderings with which you could pack the items
into bins. But it does this in O(n2n) instead of O(n!).

7


