
12/1/21, 6'19 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/211201/Problems.html

15-295 Fall 2021 #14 Selection Round 2

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Visiting Your Friends
2 s., 512 MB

There are two graphs defined over the same set of nodes. There's a friendship graph, and a transportation graph.
Both of these are undirected, unweighted, simple graphs. Initially the friendship graph has edges and the
transportation graph has edges.

The set of nodes never changes, but new edges can be added over time to either graph. Edges are never removed. As
the graphs evolve, there are queries that must be answered. A query specifies a vertex , and it requires you to count
the number of neighbors of in the current friendship graph that are reachable from in the current transportation
graph.

Input
The first line contains three integers , , — number of nodes, the initial number of edges in the friendship graph,
and the initial number of edges in the transportation graph (,).

The following lines contain two integers and each (,) — an edge of a graph. The first
of them define the friendship graph, and the next define the transportation graph.

The next line contains the integer () — the number of requests and updates to be done. Each of the
following lines is a request or update.

"F " adds an between and (,) in the friendship graph. It is guaranteed that there was no
edge in the friendship graph before the update.
"T " adds an between and (,) in the transportation graph. It is guaranteed that there
was no edge in the transportation graph before the update.
"? " means that your program should print the number of neighbors of () in the current friendship
graph that are reachable from in the current transportation graph.

Output
For each request "? " print the answer on a new line.

input
4	2	2
1	2
1	3
1	2
1	4
5
?	1
F	4	1
?	1
T	4	3
?	1

!
"

#

$
$ $

! " #
1 ≤ ! ≤ 105 0 ≤ ", # ≤ 105

" + # % & 1 ≤ %, & ≤ ! % ≠ & "
#

' 0 ≤ ' ≤ 105

'

% & % & 1 ≤ %, & ≤ ! % ≠ &
(%, &)

% & % & 1 ≤ %, & ≤ ! % ≠ &
(%, &)

$ $ 1 ≤ $ ≤ !
$

$

output
1
2
3

B. A Two-Disk Cover
1 s., 256 MB

You're given a list of points in the plane. You're also told the location of the centers of two disks, and . The
goal is to determine the radii of the two disks and such that each of the points of lies inside one or both of the
disks. Compute the minimum possible value of under these constraints.

Input
The first line contains four integers ,), (,), the location of the centers of the two disks. The second line
contains an integer (), which is the number of points in the list . Each of the next lines contains two
integers and , where is a point in . The coordinates af the centers of the disks and the points of are all at
most 1000 in absolute value.

Output
Output one integer, the minimum possible value of , under the circumstances.

input
0	0	10	0
2
-3	3
10	0

input

0	0	6	0
5
-4	-2
-2	3
4	0
6	-2
9	1

The following figure illustrates sample 2. In the optimal solution the two radii are and .

(!)1)2
*1 *2 (

+*2
1 *2

2

(+1 ,1 +2 ,2
! 1 ≤ ! ≤ 105 (!

+ , (+, ,) ((

+*2
1 *2

2

output

18

output
30

20‾‾‾√ 10‾‾‾√

C. Particle Partition
1 s., 256 MB

There is an ordered list of particles, the th of which has a mass and a maximum speed of . The goal is to
partition the list into groups of consecutive particles in such a way as to minimize the time it takes them to pass the
obstacle.

To pass the obstacle the group must have a total weight of at most . The length of the obstacle is . The time it
takes a group to pass an obstacle is divide by the speed of the slowest particle in the group.

The first group enters the obstacle at time . After that group completes its pass through the obstacle the second
group enters the obstacle. When it's finished, the third group enters, etc.

The completion time is defined as the time that the last group exits the obstacle.

Input
The first line contains three integers, , the upper bound on the weight of a group, , the
length of the obstacle (in meters), and , the number particles in the list.

Each of the next lines contains two integers: , the weight of each particle, and , the
speed of each particle (in meters/second).

Output
The output is a single real number indicating the total time (in seconds), with at least eight digits after the decimal
point.

input
100	5	10
40	25
50	20
50	20
70	10
12	50
9	70
49	30
38	25
27	50
19	70

! - .- /-

0 (
(

0

0 ≤ − 1231 (≤ − 1231

! ≤ 1000
! ≤ 0.- 1 ≤ ≤ − 1/- 231

output

75.00000000

D. Equivalent Spanning Trees
3 s., 1024 MB

You're given a list of weighted spanning trees on nodes numbered . A spanning tree in this list defines
a bottleneck cost between each pair of nodes and – it's the minimum cost edge on the path from to
in .

Two spanning trees and are equivalent if for all we have .

The goal of this problem is to determine the equivalences class of each of the spanning trees in the list.

Input
The first line contains two integers and with , , and .

Following this are lines. The first of them define the first spanning tree, and so on. Each line is of the
form , which defines an edge from node to node of cost . So , , and .

Output
The output is just one line with integers. The th number should be the minimum index , where the th spanning
tree in the input is equivalent to the th network in the input.

input
3	3
1	2	1
1	3	1
1	2	1
2	3	1
1	2	1
2	3	2

input

3	4
1	2	2
2	3	1
3	4	2
1	3	2
2	4	2
2	3	1
1	2	2
1	3	1
3	4	2

1 ! 1, 2, … , ! 2
(-, 3)BC2 - 3 - 3

2

4 2 1 ≤ - < 3 ≤ ! (-, 3) = (-, 3)BC4 BC2

1

1 ! 1 ≤ 1 2 ≤ ! ! ⋅ 1 ≤ /2106

1 ⋅ (! − 1) ! − 1
% &) % &) 1 ≤ %, & ≤ ! % ≠ & 1 ≤) ≤ 109

1 - 3 3
-

output

1	1	3	

output
1	2	1	

E. Simulate the Machine
4 s., 1024 MB

The machine has registers , each containing an 8-bit byte. A program is a sequence of operations. Each
operation is a pair , meaning that the machine does the assignment . (OR is the usual bitwise or
operation.)

So, a program is specified, along with the initial values of all the registers, and an integer . We're going to run the
program for steps. If the program comes to the end and there are more steps to go, it just starts over again. This
process continues until steps have been done.

The goal is to efficiently compute the final value of all the registers, even though the number of steps you might have to
simulate is insane.

Input
The first line contains three integers , , and , with and . is the length of the
program.

The next lines contain the program. Each of these lines contains and , the register numbers of the operation. (
).

The last line contains integers in the range 0 to 255, which specify the initial values of the registers.

Output
Print out the final register values (after steps of simulation) in the same format as the last line of of the input.

input
5	4	5
1	2
2	3
2	4
4	4
8	0	5	3	10

! , … ,+1 +!
(%, &) ← OR+% +% +&

5 /
/

/

! (/ 1 ≤ !, (≤ 218 1 ≤ / ≤ 1018 (

(% &
1 ≤ %, & ≤ !

!

/

output

15	7	5	3	10	

F. Not Quite Scrabble
2 s., 256 MB

It all starts with Scrabble trays with letters in them. The trays are numbered 1 through . The letters in the th tray are
represented by a string . You're going to (try) to build a goal word in your own Scrabble tray by raiding letters in the
other Scrabble trays.

But there are some rules and regulations. For each tray there is a limit on the number of letters that can be stolen
from it. Also, the letters have a cost associated with them. The letters in tray cost dollars to use.

Your goal is to compute the minimum total cost needed to build .

Input
The input begins with your goal string on a line by itself. The next line contains () the number of trays
you have to work from. Each of the next lines contain a string , followed by .

The strings are all non-empty, and consist of lower case Latin letters. The total length of all the strings does not exceed
100.

Output
Print the minimum cost of a solution, or -1 if there is no solution.

input
jjaze
3
jzj	2
aej	3
ja	10

input

wbwcwbw
4
wbw	2
bcc	1
cww	2
bbb	5

! ! -
6- 7

- 8-
- -

7

7 ! 1 ≤ ! ≤ 100
! 6- 8-

output

8

output
18

G. Simple Linkages
1 s., 256 MB

You're given a linkage system consisting of links. The system is restricted to operate in two dimensions. One end of
link 1 is pinned in a flexible manner to the point . The other end of link 1 is pinned to link 2, also in a flexible
manner. The construction continues up to the th link. Although the links are connected together, they do not
otherwise interfere with each other.

The goal is to get the far end of link as close as possible to some specified target point .

Input
The first line contains , the number of links in the linkage. Each of the following lines contain an integer , the
length of the th link. The final link contains two more integers, the target point .

The bounds on these inputs are: , , and the absolute values of the target coordinates do
not exceed .

Output
The output consists of lines, each containing two real numbers and , indicating the coordinates of the tip of the
th link. The length of each link, as derived from your numbers should not differ from the actual length by more than

. Also, your solution's distance to the target should not differ by more than from that of the correct solution.

!
(0, 0)

!

! (+, ,)

! ! (-
- (+, ,)

1 ≤ ! ≤ 20 1 ≤ ≤ 1000(-
2 × 104

! +- ,-
-
.01 .01

H. Roller Coaster
1 second, 256 megabytes

Yihan recently received the job to design and test roller coasters for amusement parks. The safety and security of roller
coasters are of great importance, so each design needs careful simulation to make sure everything is alright.

Hence, before a roller coaster is installed, it has to be run on a simulated track. A simulated track consists of rails
attached end-to-end with the beginning of the first rail fixed at elevation 0. Yihan can reconfigure the track at will by
adjusting the elevation change over a number of consecutive rails. The elevation change over other rails is not
affected. Each time rails are adjusted, the following track is raised or lowered as necessary to connect the track while
maintaining the start at elevation 0. The figure on the next page illustrates the track reconfigurations for the sample
input.

Each ride is initiated by launching the car with sufficient energy to reach height . That is, the car will continue to travel
as long as the elevation of the track does not exceed , and as long as the end of the track is not reached. Given the
record for all the day's rides and track configuration changes, compute for each ride the number of rails traversed by
the car before it stops.

Internally, the simulator represents the track as a sequence of elevation changes, one for each rail. The -th number
 represents the elevation change (in centimeters) over the -th rail. Suppose that after traversing rails, the car

has reached an elevation of centimetres. After traversing rails, the car will have reached an elevation of
centimeters. Initially the rails are horizontal; that is, for all . Rides and reconfigurations are interleaved
throughout the day. Each reconfiguration is specified by three numbers: , and . The segment to be adjusted
consists of rails a through (inclusive). The elevation change over each rail in the segment is set to . That is,
for all . Each ride is specified by one number —the maximum height that the car can reach.

Your task is to write a program that reads from the standard input a sequence of interleaved reconfigurations and
rides, and computes the number of rails traversed by the car for each ride.

Input
The first line of input contains one positive integer — the number of rails, . The following lines contain
reconfigurations interleaved with rides, followed by an end marker. Each line contains one of:

Reconfiguration — a single letter "I", and integers , and , all separated by single spaces (,
),

Ride — a single letter "Q", and an integer () separated by a single space,
A single letter "E"—the end marker, indicating the end of the input data.

You may assume that at any moment the elevation of any point in the track is in the interval centimeters. The
input contains no more than lines.

Output
The -th line of output should consist of one integer—the number of rails traversed by the car during the -th ride.

input

4
Q	1
I	1	4	2
Q	3
Q	1
I	2	2	-1
Q	3
E

Views of the track before and after each reconfiguration. The axis denotes the rail number. The axis and the
numbers over points denote elevation. The numbers over segments denote elevation changes.

!

ℎ
ℎ

! -
1- - - − 1

ℎ - ℎ + 1-
= 01- -

% & :
& : = :1-

% ≤ - ≤ & ℎ

! 1 ≤ ! ≤ 109

% & : 1 ≤ % ≤ & ≤ !
− ≤ : ≤109 109

ℎ 0 ≤ ℎ ≤ 109

[0,]109

105

- -

output
4
1
0
3

+ ,

12/1/21, 6'27 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/211201/Problems.html

15-295 Fall 2021 #14 Selection Round 2

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Visiting Your Friends
2 s., 512 MB

There are two graphs defined over the same set of nodes. There's a friendship graph, and a transportation graph.
Both of these are undirected, unweighted, simple graphs. Initially the friendship graph has edges and the
transportation graph has edges.

The set of nodes never changes, but new edges can be added over time to either graph. Edges are never removed. As
the graphs evolve, there are queries that must be answered. A query specifies a vertex , and it requires you to count
the number of neighbors of in the current friendship graph that are reachable from in the current transportation
graph.

Input
The first line contains three integers , , — number of nodes, the initial number of edges in the friendship graph,
and the initial number of edges in the transportation graph (,).

The following lines contain two integers and each (,) — an edge of a graph. The first
of them define the friendship graph, and the next define the transportation graph.

The next line contains the integer () — the number of requests and updates to be done. Each of the
following lines is a request or update.

"F " adds an between and (,) in the friendship graph. It is guaranteed that there was no
edge in the friendship graph before the update.
"T " adds an between and (,) in the transportation graph. It is guaranteed that there
was no edge in the transportation graph before the update.
"? " means that your program should print the number of neighbors of () in the current friendship
graph that are reachable from in the current transportation graph.

Output
For each request "? " print the answer on a new line.

input
4	2	2
1	2
1	3
1	2
1	4
5
?	1
F	4	1
?	1
T	4	3
?	1

!
"

#

$
$ $

! " #
1 ≤ ! ≤ 105 0 ≤ ", # ≤ 105

" + # % & 1 ≤ %, & ≤ ! % ≠ & "
#

' 0 ≤ ' ≤ 105

'

% & % & 1 ≤ %, & ≤ ! % ≠ &
(%, &)

% & % & 1 ≤ %, & ≤ ! % ≠ &
(%, &)

$ $ 1 ≤ $ ≤ !
$

$

output
1
2
3

B. A Two-Disk Cover
1 s., 256 MB

You're given a list of points in the plane. You're also told the location of the centers of two disks, and . The
goal is to determine the radii of the two disks and such that each of the points of lies inside one or both of the
disks. Compute the minimum possible value of under these constraints.

Input
The first line contains four integers ,), (,), the location of the centers of the two disks. The second line
contains an integer (), which is the number of points in the list . Each of the next lines contains two
integers and , where is a point in . The coordinates af the centers of the disks and the points of are all at
most 1000 in absolute value.

Output
Output one integer, the minimum possible value of , under the circumstances.

input
0	0	10	0
2
-3	3
10	0

input

0	0	6	0
5
-4	-2
-2	3
4	0
6	-2
9	1

The following figure illustrates sample 2. In the optimal solution the two radii are and .

(!)1)2
*1 *2 (

+*2
1 *2

2

(+1 ,1 +2 ,2
! 1 ≤ ! ≤ 105 (!

+ , (+, ,) ((

+*2
1 *2

2

output

18

output
30

20‾‾‾√ 10‾‾‾√

C. Particle Partition
1 s., 256 MB

There is an ordered list of particles, the th of which has a mass and a maximum speed of . The goal is to
partition the list into groups of consecutive particles in such a way as to minimize the time it takes them to pass the
obstacle.

To pass the obstacle the group must have a total weight of at most . The length of the obstacle is . The time it
takes a group to pass an obstacle is divide by the speed of the slowest particle in the group.

The first group enters the obstacle at time . After that group completes its pass through the obstacle the second
group enters the obstacle. When it's finished, the third group enters, etc.

The completion time is defined as the time that the last group exits the obstacle.

Input
The first line contains three integers, , the upper bound on the weight of a group, , the
length of the obstacle (in meters), and , the number particles in the list.

Each of the next lines contains two integers: , the weight of each particle, and , the
speed of each particle (in meters/second).

Output
The output is a single real number indicating the total time (in seconds), with at least eight digits after the decimal
point.

input
100	5	10
40	25
50	20
50	20
70	10
12	50
9	70
49	30
38	25
27	50
19	70

! - .- /-

0 (
(

0

0 ≤ − 1231 (≤ − 1231

! ≤ 1000
! ≤ 0.- 1 ≤ ≤ − 1/- 231

output

75.00000000

D. Equivalent Spanning Trees
3 s., 1024 MB

You're given a list of weighted spanning trees on nodes numbered . A spanning tree in this list defines
a bottleneck cost between each pair of nodes and – it's the minimum cost edge on the path from to
in .

Two spanning trees and are equivalent if for all we have .

The goal of this problem is to determine the equivalences class of each of the spanning trees in the list.

Input
The first line contains two integers and with , , and .

Following this are lines. The first of them define the first spanning tree, and so on. Each line is of the
form , which defines an edge from node to node of cost . So , , and .

Output
The output is just one line with integers. The th number should be the minimum index , where the th spanning
tree in the input is equivalent to the th network in the input.

input
3	3
1	2	1
1	3	1
1	2	1
2	3	1
1	2	1
2	3	2

input

3	4
1	2	2
2	3	1
3	4	2
1	3	2
2	4	2
2	3	1
1	2	2
1	3	1
3	4	2

1 ! 1, 2, … , ! 2
(-, 3)BC2 - 3 - 3

2

4 2 1 ≤ - < 3 ≤ ! (-, 3) = (-, 3)BC4 BC2

1

1 ! 1 ≤ 1 2 ≤ ! ! ⋅ 1 ≤ /2106

1 ⋅ (! − 1) ! − 1
% &) % &) 1 ≤ %, & ≤ ! % ≠ & 1 ≤) ≤ 109

1 - 3 3
-

output

1	1	3	

output
1	2	1	

E. Simulate the Machine
4 s., 1024 MB

The machine has registers , each containing an 8-bit byte. A program is a sequence of operations. Each
operation is a pair , meaning that the machine does the assignment . (OR is the usual bitwise or
operation.)

So, a program is specified, along with the initial values of all the registers, and an integer . We're going to run the
program for steps. If the program comes to the end and there are more steps to go, it just starts over again. This
process continues until steps have been done.

The goal is to efficiently compute the final value of all the registers, even though the number of steps you might have to
simulate is insane.

Input
The first line contains three integers , , and , with and . is the length of the
program.

The next lines contain the program. Each of these lines contains and , the register numbers of the operation. (
).

The last line contains integers in the range 0 to 255, which specify the initial values of the registers.

Output
Print out the final register values (after steps of simulation) in the same format as the last line of of the input.

input
5	4	5
1	2
2	3
2	4
4	4
8	0	5	3	10

! , … ,+1 +!
(%, &) ← OR+% +% +&

5 /
/

/

! (/ 1 ≤ !, (≤ 218 1 ≤ / ≤ 1018 (

(% &
1 ≤ %, & ≤ !

!

/

output

15	7	5	3	10	

F. Not Quite Scrabble
2 s., 256 MB

It all starts with Scrabble trays with letters in them. The trays are numbered 1 through . The letters in the th tray are
represented by a string . You're going to (try) to build a goal word in your own Scrabble tray by raiding letters in the
other Scrabble trays.

But there are some rules and regulations. For each tray there is a limit on the number of letters that can be stolen
from it. Also, the letters have a cost associated with them. The letters in tray cost dollars to use.

Your goal is to compute the minimum total cost needed to build .

Input
The input begins with your goal string on a line by itself. The next line contains () the number of trays
you have to work from. Each of the next lines contain a string , followed by .

The strings are all non-empty, and consist of lower case Latin letters. The total length of all the strings does not exceed
100.

Output
Print the minimum cost of a solution, or -1 if there is no solution.

input
jjaze
3
jzj	2
aej	3
ja	10

input

wbwcwbw
4
wbw	2
bcc	1
cww	2
bbb	5

! ! -
6- 7

- 8-
- -

7

7 ! 1 ≤ ! ≤ 100
! 6- 8-

output

8

output
18

G. Simple Linkages
1 s., 256 MB

You're given a linkage system consisting of links. The system is restricted to operate in two dimensions. One end of
link 1 is pinned in a flexible manner to the point . The other end of link 1 is pinned to link 2, also in a flexible
manner. The construction continues up to the th link. Although the links are connected together, they do not
otherwise interfere with each other.

The goal is to get the far end of link as close as possible to some specified target point .

Input
The first line contains , the number of links in the linkage. Each of the following lines contain an integer , the
length of the th link. The final link contains two more integers, the target point .

The bounds on these inputs are: , , and the absolute values of the target coordinates do
not exceed .

Output
The output consists of lines, each containing two real numbers and , indicating the coordinates of the tip of the
th link. The length of each link, as derived from your numbers should not differ from the actual length by more than

. Also, your solution's distance to the target should not differ by more than from that of the correct solution.

input
3
5
3
4
5	3

input

2
4
2
-8	-3

!
(0, 0)

!

! (+, ,)

! ! (-
- (+, ,)

1 ≤ ! ≤ 20 1 ≤ ≤ 1000(-
2 × 104

! +- ,-
-
.01 .01

output
4.114	-2.842
6.297	-0.784
5.000	3.000

output
-3.745	-1.404
-5.618	-2.107

H. Roller Coaster
1 second, 256 megabytes

Yihan recently received the job to design and test roller coasters for amusement parks. The safety and security of roller
coasters are of great importance, so each design needs careful simulation to make sure everything is alright.

Hence, before a roller coaster is installed, it has to be run on a simulated track. A simulated track consists of rails
attached end-to-end with the beginning of the first rail fixed at elevation 0. Yihan can reconfigure the track at will by
adjusting the elevation change over a number of consecutive rails. The elevation change over other rails is not
affected. Each time rails are adjusted, the following track is raised or lowered as necessary to connect the track while
maintaining the start at elevation 0. The figure on the next page illustrates the track reconfigurations for the sample
input.

Each ride is initiated by launching the car with sufficient energy to reach height . That is, the car will continue to travel
as long as the elevation of the track does not exceed , and as long as the end of the track is not reached. Given the
record for all the day's rides and track configuration changes, compute for each ride the number of rails traversed by
the car before it stops.

Internally, the simulator represents the track as a sequence of elevation changes, one for each rail. The -th number
 represents the elevation change (in centimeters) over the -th rail. Suppose that after traversing rails, the car

has reached an elevation of centimetres. After traversing rails, the car will have reached an elevation of
centimeters. Initially the rails are horizontal; that is, for all . Rides and reconfigurations are interleaved
throughout the day. Each reconfiguration is specified by three numbers: , and . The segment to be adjusted
consists of rails a through (inclusive). The elevation change over each rail in the segment is set to . That is,
for all . Each ride is specified by one number —the maximum height that the car can reach.

Your task is to write a program that reads from the standard input a sequence of interleaved reconfigurations and
rides, and computes the number of rails traversed by the car for each ride.

Input
The first line of input contains one positive integer — the number of rails, . The following lines contain
reconfigurations interleaved with rides, followed by an end marker. Each line contains one of:

Reconfiguration — a single letter "I", and integers , and , all separated by single spaces (,
),

Ride — a single letter "Q", and an integer () separated by a single space,
A single letter "E"—the end marker, indicating the end of the input data.

You may assume that at any moment the elevation of any point in the track is in the interval centimeters. The
input contains no more than lines.

Output
The -th line of output should consist of one integer—the number of rails traversed by the car during the -th ride.

input
4
Q	1
I	1	4	2
Q	3
Q	1
I	2	2	-1
Q	3
E

Views of the track before and after each reconfiguration. The axis denotes the rail number. The axis and the
numbers over points denote elevation. The numbers over segments denote elevation changes.

!

ℎ
ℎ

! -
1- - - − 1

ℎ - ℎ + 1-
= 01- -

% & :
& : = :1-

% ≤ - ≤ & ℎ

! 1 ≤ ! ≤ 109

% & : 1 ≤ % ≤ & ≤ !
− ≤ : ≤109 109

ℎ 0 ≤ ℎ ≤ 109

[0,]109

105

- -

output
4
1
0
3

+ ,

12/1/21, 6'27 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/211201/Problems.html

15-295 Fall 2021 #14 Selection Round 2

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Visiting Your Friends
2 s., 512 MB

There are two graphs defined over the same set of nodes. There's a friendship graph, and a transportation graph.
Both of these are undirected, unweighted, simple graphs. Initially the friendship graph has edges and the
transportation graph has edges.

The set of nodes never changes, but new edges can be added over time to either graph. Edges are never removed. As
the graphs evolve, there are queries that must be answered. A query specifies a vertex , and it requires you to count
the number of neighbors of in the current friendship graph that are reachable from in the current transportation
graph.

Input
The first line contains three integers , , — number of nodes, the initial number of edges in the friendship graph,
and the initial number of edges in the transportation graph (,).

The following lines contain two integers and each (,) — an edge of a graph. The first
of them define the friendship graph, and the next define the transportation graph.

The next line contains the integer () — the number of requests and updates to be done. Each of the
following lines is a request or update.

"F " adds an between and (,) in the friendship graph. It is guaranteed that there was no
edge in the friendship graph before the update.
"T " adds an between and (,) in the transportation graph. It is guaranteed that there
was no edge in the transportation graph before the update.
"? " means that your program should print the number of neighbors of () in the current friendship
graph that are reachable from in the current transportation graph.

Output
For each request "? " print the answer on a new line.

input
4	2	2
1	2
1	3
1	2
1	4
5
?	1
F	4	1
?	1
T	4	3
?	1

!
"

#

$
$ $

! " #
1 ≤ ! ≤ 105 0 ≤ ", # ≤ 105

" + # % & 1 ≤ %, & ≤ ! % ≠ & "
#

' 0 ≤ ' ≤ 105

'

% & % & 1 ≤ %, & ≤ ! % ≠ &
(%, &)

% & % & 1 ≤ %, & ≤ ! % ≠ &
(%, &)

$ $ 1 ≤ $ ≤ !
$

$

output
1
2
3

B. A Two-Disk Cover
1 s., 256 MB

You're given a list of points in the plane. You're also told the location of the centers of two disks, and . The
goal is to determine the radii of the two disks and such that each of the points of lies inside one or both of the
disks. Compute the minimum possible value of under these constraints.

Input
The first line contains four integers ,), (,), the location of the centers of the two disks. The second line
contains an integer (), which is the number of points in the list . Each of the next lines contains two
integers and , where is a point in . The coordinates af the centers of the disks and the points of are all at
most 1000 in absolute value.

Output
Output one integer, the minimum possible value of , under the circumstances.

input
0	0	10	0
2
-3	3
10	0

input

0	0	6	0
5
-4	-2
-2	3
4	0
6	-2
9	1

The following figure illustrates sample 2. In the optimal solution the two radii are and .

(!)1)2
*1 *2 (

+*2
1 *2

2

(+1 ,1 +2 ,2
! 1 ≤ ! ≤ 105 (!

+ , (+, ,) ((

+*2
1 *2

2

output

18

output
30

20‾‾‾√ 10‾‾‾√

C. Particle Partition
1 s., 256 MB

There is an ordered list of particles, the th of which has a mass and a maximum speed of . The goal is to
partition the list into groups of consecutive particles in such a way as to minimize the time it takes them to pass the
obstacle.

To pass the obstacle the group must have a total weight of at most . The length of the obstacle is . The time it
takes a group to pass an obstacle is divide by the speed of the slowest particle in the group.

The first group enters the obstacle at time . After that group completes its pass through the obstacle the second
group enters the obstacle. When it's finished, the third group enters, etc.

The completion time is defined as the time that the last group exits the obstacle.

Input
The first line contains three integers, , the upper bound on the weight of a group, , the
length of the obstacle (in meters), and , the number particles in the list.

Each of the next lines contains two integers: , the weight of each particle, and , the
speed of each particle (in meters/second).

Output
The output is a single real number indicating the total time (in seconds), with at least eight digits after the decimal
point.

input
100	5	10
40	25
50	20
50	20
70	10
12	50
9	70
49	30
38	25
27	50
19	70

! - .- /-

0 (
(

0

0 ≤ − 1231 (≤ − 1231

! ≤ 1000
! ≤ 0.- 1 ≤ ≤ − 1/- 231

output

75.00000000

D. Equivalent Spanning Trees
3 s., 1024 MB

You're given a list of weighted spanning trees on nodes numbered . A spanning tree in this list defines
a bottleneck cost between each pair of nodes and – it's the minimum cost edge on the path from to
in .

Two spanning trees and are equivalent if for all we have .

The goal of this problem is to determine the equivalences class of each of the spanning trees in the list.

Input
The first line contains two integers and with , , and .

Following this are lines. The first of them define the first spanning tree, and so on. Each line is of the
form , which defines an edge from node to node of cost . So , , and .

Output
The output is just one line with integers. The th number should be the minimum index , where the th spanning
tree in the input is equivalent to the th network in the input.

input
3	3
1	2	1
1	3	1
1	2	1
2	3	1
1	2	1
2	3	2

input

3	4
1	2	2
2	3	1
3	4	2
1	3	2
2	4	2
2	3	1
1	2	2
1	3	1
3	4	2

1 ! 1, 2, … , ! 2
(-, 3)BC2 - 3 - 3

2

4 2 1 ≤ - < 3 ≤ ! (-, 3) = (-, 3)BC4 BC2

1

1 ! 1 ≤ 1 2 ≤ ! ! ⋅ 1 ≤ /2106

1 ⋅ (! − 1) ! − 1
% &) % &) 1 ≤ %, & ≤ ! % ≠ & 1 ≤) ≤ 109

1 - 3 3
-

output

1	1	3	

output
1	2	1	

E. Simulate the Machine
4 s., 1024 MB

The machine has registers , each containing an 8-bit byte. A program is a sequence of operations. Each
operation is a pair , meaning that the machine does the assignment . (OR is the usual bitwise or
operation.)

So, a program is specified, along with the initial values of all the registers, and an integer . We're going to run the
program for steps. If the program comes to the end and there are more steps to go, it just starts over again. This
process continues until steps have been done.

The goal is to efficiently compute the final value of all the registers, even though the number of steps you might have to
simulate is insane.

Input
The first line contains three integers , , and , with and . is the length of the
program.

The next lines contain the program. Each of these lines contains and , the register numbers of the operation. (
).

The last line contains integers in the range 0 to 255, which specify the initial values of the registers.

Output
Print out the final register values (after steps of simulation) in the same format as the last line of of the input.

input
5	4	5
1	2
2	3
2	4
4	4
8	0	5	3	10

! , … ,+1 +!
(%, &) ← OR+% +% +&

5 /
/

/

! (/ 1 ≤ !, (≤ 218 1 ≤ / ≤ 1018 (

(% &
1 ≤ %, & ≤ !

!

/

output

15	7	5	3	10	

F. Not Quite Scrabble
2 s., 256 MB

It all starts with Scrabble trays with letters in them. The trays are numbered 1 through . The letters in the th tray are
represented by a string . You're going to (try) to build a goal word in your own Scrabble tray by raiding letters in the
other Scrabble trays.

But there are some rules and regulations. For each tray there is a limit on the number of letters that can be stolen
from it. Also, the letters have a cost associated with them. The letters in tray cost dollars to use.

Your goal is to compute the minimum total cost needed to build .

Input
The input begins with your goal string on a line by itself. The next line contains () the number of trays
you have to work from. Each of the next lines contain a string , followed by .

The strings are all non-empty, and consist of lower case Latin letters. The total length of all the strings does not exceed
100.

Output
Print the minimum cost of a solution, or -1 if there is no solution.

input
jjaze
3
jzj	2
aej	3
ja	10

input

wbwcwbw
4
wbw	2
bcc	1
cww	2
bbb	5

! ! -
6- 7

- 8-
- -

7

7 ! 1 ≤ ! ≤ 100
! 6- 8-

output

8

output
18

G. Simple Linkages
1 s., 256 MB

You're given a linkage system consisting of links. The system is restricted to operate in two dimensions. One end of
link 1 is pinned in a flexible manner to the point . The other end of link 1 is pinned to link 2, also in a flexible
manner. The construction continues up to the th link. Although the links are connected together, they do not
otherwise interfere with each other.

The goal is to get the far end of link as close as possible to some specified target point .

Input
The first line contains , the number of links in the linkage. Each of the following lines contain an integer , the
length of the th link. The final link contains two more integers, the target point .

The bounds on these inputs are: , , and the absolute values of the target coordinates do
not exceed .

Output
The output consists of lines, each containing two real numbers and , indicating the coordinates of the tip of the
th link. The length of each link, as derived from your numbers should not differ from the actual length by more than

. Also, your solution's distance to the target should not differ by more than from that of the correct solution.

input
3
5
3
4
5	3

input

2
4
2
-8	-3

!
(0, 0)

!

! (+, ,)

! ! (-
- (+, ,)

1 ≤ ! ≤ 20 1 ≤ ≤ 1000(-
2 × 104

! +- ,-
-
.01 .01

output
4.114	-2.842
6.297	-0.784
5.000	3.000

output
-3.745	-1.404
-5.618	-2.107

H. Roller Coaster
1 second, 256 megabytes

Yihan recently received the job to design and test roller coasters for amusement parks. The safety and security of roller
coasters are of great importance, so each design needs careful simulation to make sure everything is alright.

Hence, before a roller coaster is installed, it has to be run on a simulated track. A simulated track consists of rails
attached end-to-end with the beginning of the first rail fixed at elevation 0. Yihan can reconfigure the track at will by
adjusting the elevation change over a number of consecutive rails. The elevation change over other rails is not
affected. Each time rails are adjusted, the following track is raised or lowered as necessary to connect the track while
maintaining the start at elevation 0. The figure on the next page illustrates the track reconfigurations for the sample
input.

Each ride is initiated by launching the car with sufficient energy to reach height . That is, the car will continue to travel
as long as the elevation of the track does not exceed , and as long as the end of the track is not reached. Given the
record for all the day's rides and track configuration changes, compute for each ride the number of rails traversed by
the car before it stops.

Internally, the simulator represents the track as a sequence of elevation changes, one for each rail. The -th number
 represents the elevation change (in centimeters) over the -th rail. Suppose that after traversing rails, the car

has reached an elevation of centimetres. After traversing rails, the car will have reached an elevation of
centimeters. Initially the rails are horizontal; that is, for all . Rides and reconfigurations are interleaved
throughout the day. Each reconfiguration is specified by three numbers: , and . The segment to be adjusted
consists of rails a through (inclusive). The elevation change over each rail in the segment is set to . That is,
for all . Each ride is specified by one number —the maximum height that the car can reach.

Your task is to write a program that reads from the standard input a sequence of interleaved reconfigurations and
rides, and computes the number of rails traversed by the car for each ride.

Input
The first line of input contains one positive integer — the number of rails, . The following lines contain
reconfigurations interleaved with rides, followed by an end marker. Each line contains one of:

Reconfiguration — a single letter "I", and integers , and , all separated by single spaces (,
),

Ride — a single letter "Q", and an integer () separated by a single space,
A single letter "E"—the end marker, indicating the end of the input data.

You may assume that at any moment the elevation of any point in the track is in the interval centimeters. The
input contains no more than lines.

Output
The -th line of output should consist of one integer—the number of rails traversed by the car during the -th ride.

input
4
Q	1
I	1	4	2
Q	3
Q	1
I	2	2	-1
Q	3
E

Views of the track before and after each reconfiguration. The axis denotes the rail number. The axis and the
numbers over points denote elevation. The numbers over segments denote elevation changes.

!

ℎ
ℎ

! -
1- - - − 1

ℎ - ℎ + 1-
= 01- -

% & :
& : = :1-

% ≤ - ≤ & ℎ

! 1 ≤ ! ≤ 109

% & : 1 ≤ % ≤ & ≤ !
− ≤ : ≤109 109

ℎ 0 ≤ ℎ ≤ 109

[0,]109

105

- -

output
4
1
0
3

+ ,

Actually, the output should be in units of 1/60 seconds. See sample.

12/1/21, 6'19 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/211201/Problems.html

15-295 Fall 2021 #14 Selection Round 2

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Visiting Your Friends
2 s., 512 MB

There are two graphs defined over the same set of nodes. There's a friendship graph, and a transportation graph.
Both of these are undirected, unweighted, simple graphs. Initially the friendship graph has edges and the
transportation graph has edges.

The set of nodes never changes, but new edges can be added over time to either graph. Edges are never removed. As
the graphs evolve, there are queries that must be answered. A query specifies a vertex , and it requires you to count
the number of neighbors of in the current friendship graph that are reachable from in the current transportation
graph.

Input
The first line contains three integers , , — number of nodes, the initial number of edges in the friendship graph,
and the initial number of edges in the transportation graph (,).

The following lines contain two integers and each (,) — an edge of a graph. The first
of them define the friendship graph, and the next define the transportation graph.

The next line contains the integer () — the number of requests and updates to be done. Each of the
following lines is a request or update.

"F " adds an between and (,) in the friendship graph. It is guaranteed that there was no
edge in the friendship graph before the update.
"T " adds an between and (,) in the transportation graph. It is guaranteed that there
was no edge in the transportation graph before the update.
"? " means that your program should print the number of neighbors of () in the current friendship
graph that are reachable from in the current transportation graph.

Output
For each request "? " print the answer on a new line.

input
4	2	2
1	2
1	3
1	2
1	4
5
?	1
F	4	1
?	1
T	4	3
?	1

!
"

#

$
$ $

! " #
1 ≤ ! ≤ 105 0 ≤ ", # ≤ 105

" + # % & 1 ≤ %, & ≤ ! % ≠ & "
#

' 0 ≤ ' ≤ 105

'

% & % & 1 ≤ %, & ≤ ! % ≠ &
(%, &)

% & % & 1 ≤ %, & ≤ ! % ≠ &
(%, &)

$ $ 1 ≤ $ ≤ !
$

$

output
1
2
3

B. A Two-Disk Cover
1 s., 256 MB

You're given a list of points in the plane. You're also told the location of the centers of two disks, and . The
goal is to determine the radii of the two disks and such that each of the points of lies inside one or both of the
disks. Compute the minimum possible value of under these constraints.

Input
The first line contains four integers ,), (,), the location of the centers of the two disks. The second line
contains an integer (), which is the number of points in the list . Each of the next lines contains two
integers and , where is a point in . The coordinates af the centers of the disks and the points of are all at
most 1000 in absolute value.

Output
Output one integer, the minimum possible value of , under the circumstances.

input
0	0	10	0
2
-3	3
10	0

input

0	0	6	0
5
-4	-2
-2	3
4	0
6	-2
9	1

The following figure illustrates sample 2. In the optimal solution the two radii are and .

(!)1)2
*1 *2 (

+*2
1 *2

2

(+1 ,1 +2 ,2
! 1 ≤ ! ≤ 105 (!

+ , (+, ,) ((

+*2
1 *2

2

output

18

output
30

20‾‾‾√ 10‾‾‾√

C. Particle Partition
1 s., 256 MB

There is an ordered list of particles, the th of which has a mass and a maximum speed of . The goal is to
partition the list into groups of consecutive particles in such a way as to minimize the time it takes them to pass the
obstacle.

To pass the obstacle the group must have a total weight of at most . The length of the obstacle is . The time it
takes a group to pass an obstacle is divide by the speed of the slowest particle in the group.

The first group enters the obstacle at time . After that group completes its pass through the obstacle the second
group enters the obstacle. When it's finished, the third group enters, etc.

The completion time is defined as the time that the last group exits the obstacle.

Input
The first line contains three integers, , the upper bound on the weight of a group, , the
length of the obstacle (in meters), and , the number particles in the list.

Each of the next lines contains two integers: , the weight of each particle, and , the
speed of each particle (in meters/second).

Output
The output is a single real number indicating the total time (in seconds), with at least eight digits after the decimal
point.

input
100	5	10
40	25
50	20
50	20
70	10
12	50
9	70
49	30
38	25
27	50
19	70

! - .- /-

0 (
(

0

0 ≤ − 1231 (≤ − 1231

! ≤ 1000
! ≤ 0.- 1 ≤ ≤ − 1/- 231

output

75.00000000

D. Equivalent Spanning Trees
3 s., 1024 MB

You're given a list of weighted spanning trees on nodes numbered . A spanning tree in this list defines
a bottleneck cost between each pair of nodes and – it's the minimum cost edge on the path from to
in .

Two spanning trees and are equivalent if for all we have .

The goal of this problem is to determine the equivalences class of each of the spanning trees in the list.

Input
The first line contains two integers and with , , and .

Following this are lines. The first of them define the first spanning tree, and so on. Each line is of the
form , which defines an edge from node to node of cost . So , , and .

Output
The output is just one line with integers. The th number should be the minimum index , where the th spanning
tree in the input is equivalent to the th network in the input.

input
3	3
1	2	1
1	3	1
1	2	1
2	3	1
1	2	1
2	3	2

input

3	4
1	2	2
2	3	1
3	4	2
1	3	2
2	4	2
2	3	1
1	2	2
1	3	1
3	4	2

1 ! 1, 2, … , ! 2
(-, 3)BC2 - 3 - 3

2

4 2 1 ≤ - < 3 ≤ ! (-, 3) = (-, 3)BC4 BC2

1

1 ! 1 ≤ 1 2 ≤ ! ! ⋅ 1 ≤ /2106

1 ⋅ (! − 1) ! − 1
% &) % &) 1 ≤ %, & ≤ ! % ≠ & 1 ≤) ≤ 109

1 - 3 3
-

output

1	1	3	

output
1	2	1	

E. Simulate the Machine
4 s., 1024 MB

The machine has registers , each containing an 8-bit byte. A program is a sequence of operations. Each
operation is a pair , meaning that the machine does the assignment . (OR is the usual bitwise or
operation.)

So, a program is specified, along with the initial values of all the registers, and an integer . We're going to run the
program for steps. If the program comes to the end and there are more steps to go, it just starts over again. This
process continues until steps have been done.

The goal is to efficiently compute the final value of all the registers, even though the number of steps you might have to
simulate is insane.

Input
The first line contains three integers , , and , with and . is the length of the
program.

The next lines contain the program. Each of these lines contains and , the register numbers of the operation. (
).

The last line contains integers in the range 0 to 255, which specify the initial values of the registers.

Output
Print out the final register values (after steps of simulation) in the same format as the last line of of the input.

input
5	4	5
1	2
2	3
2	4
4	4
8	0	5	3	10

! , … ,+1 +!
(%, &) ← OR+% +% +&

5 /
/

/

! (/ 1 ≤ !, (≤ 218 1 ≤ / ≤ 1018 (

(% &
1 ≤ %, & ≤ !

!

/

output

15	7	5	3	10	

F. Not Quite Scrabble
2 s., 256 MB

It all starts with Scrabble trays with letters in them. The trays are numbered 1 through . The letters in the th tray are
represented by a string . You're going to (try) to build a goal word in your own Scrabble tray by raiding letters in the
other Scrabble trays.

But there are some rules and regulations. For each tray there is a limit on the number of letters that can be stolen
from it. Also, the letters have a cost associated with them. The letters in tray cost dollars to use.

Your goal is to compute the minimum total cost needed to build .

Input
The input begins with your goal string on a line by itself. The next line contains () the number of trays
you have to work from. Each of the next lines contain a string , followed by .

The strings are all non-empty, and consist of lower case Latin letters. The total length of all the strings does not exceed
100.

Output
Print the minimum cost of a solution, or -1 if there is no solution.

input
jjaze
3
jzj	2
aej	3
ja	10

input

wbwcwbw
4
wbw	2
bcc	1
cww	2
bbb	5

! ! -
6- 7

- 8-
- -

7

7 ! 1 ≤ ! ≤ 100
! 6- 8-

output

8

output
18

G. Simple Linkages
1 s., 256 MB

You're given a linkage system consisting of links. The system is restricted to operate in two dimensions. One end of
link 1 is pinned in a flexible manner to the point . The other end of link 1 is pinned to link 2, also in a flexible
manner. The construction continues up to the th link. Although the links are connected together, they do not
otherwise interfere with each other.

The goal is to get the far end of link as close as possible to some specified target point .

Input
The first line contains , the number of links in the linkage. Each of the following lines contain an integer , the
length of the th link. The final link contains two more integers, the target point .

The bounds on these inputs are: , , and the absolute values of the target coordinates do
not exceed .

Output
The output consists of lines, each containing two real numbers and , indicating the coordinates of the tip of the
th link. The length of each link, as derived from your numbers should not differ from the actual length by more than

. Also, your solution's distance to the target should not differ by more than from that of the correct solution.

!
(0, 0)

!

! (+, ,)

! ! (-
- (+, ,)

1 ≤ ! ≤ 20 1 ≤ ≤ 1000(-
2 × 104

! +- ,-
-
.01 .01

H. Roller Coaster
1 second, 256 megabytes

Yihan recently received the job to design and test roller coasters for amusement parks. The safety and security of roller
coasters are of great importance, so each design needs careful simulation to make sure everything is alright.

Hence, before a roller coaster is installed, it has to be run on a simulated track. A simulated track consists of rails
attached end-to-end with the beginning of the first rail fixed at elevation 0. Yihan can reconfigure the track at will by
adjusting the elevation change over a number of consecutive rails. The elevation change over other rails is not
affected. Each time rails are adjusted, the following track is raised or lowered as necessary to connect the track while
maintaining the start at elevation 0. The figure on the next page illustrates the track reconfigurations for the sample
input.

Each ride is initiated by launching the car with sufficient energy to reach height . That is, the car will continue to travel
as long as the elevation of the track does not exceed , and as long as the end of the track is not reached. Given the
record for all the day's rides and track configuration changes, compute for each ride the number of rails traversed by
the car before it stops.

Internally, the simulator represents the track as a sequence of elevation changes, one for each rail. The -th number
 represents the elevation change (in centimeters) over the -th rail. Suppose that after traversing rails, the car

has reached an elevation of centimetres. After traversing rails, the car will have reached an elevation of
centimeters. Initially the rails are horizontal; that is, for all . Rides and reconfigurations are interleaved
throughout the day. Each reconfiguration is specified by three numbers: , and . The segment to be adjusted
consists of rails a through (inclusive). The elevation change over each rail in the segment is set to . That is,
for all . Each ride is specified by one number —the maximum height that the car can reach.

Your task is to write a program that reads from the standard input a sequence of interleaved reconfigurations and
rides, and computes the number of rails traversed by the car for each ride.

Input
The first line of input contains one positive integer — the number of rails, . The following lines contain
reconfigurations interleaved with rides, followed by an end marker. Each line contains one of:

Reconfiguration — a single letter "I", and integers , and , all separated by single spaces (,
),

Ride — a single letter "Q", and an integer () separated by a single space,
A single letter "E"—the end marker, indicating the end of the input data.

You may assume that at any moment the elevation of any point in the track is in the interval centimeters. The
input contains no more than lines.

Output
The -th line of output should consist of one integer—the number of rails traversed by the car during the -th ride.

input

4
Q	1
I	1	4	2
Q	3
Q	1
I	2	2	-1
Q	3
E

Views of the track before and after each reconfiguration. The axis denotes the rail number. The axis and the
numbers over points denote elevation. The numbers over segments denote elevation changes.

!

ℎ
ℎ

! -
1- - - − 1

ℎ - ℎ + 1-
= 01- -

% & :
& : = :1-

% ≤ - ≤ & ℎ

! 1 ≤ ! ≤ 109

% & : 1 ≤ % ≤ & ≤ !
− ≤ : ≤109 109

ℎ 0 ≤ ℎ ≤ 109

[0,]109

105

- -

output
4
1
0
3

+ ,

12/1/21, 6'19 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/211201/Problems.html

15-295 Fall 2021 #14 Selection Round 2

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Visiting Your Friends
2 s., 512 MB

There are two graphs defined over the same set of nodes. There's a friendship graph, and a transportation graph.
Both of these are undirected, unweighted, simple graphs. Initially the friendship graph has edges and the
transportation graph has edges.

The set of nodes never changes, but new edges can be added over time to either graph. Edges are never removed. As
the graphs evolve, there are queries that must be answered. A query specifies a vertex , and it requires you to count
the number of neighbors of in the current friendship graph that are reachable from in the current transportation
graph.

Input
The first line contains three integers , , — number of nodes, the initial number of edges in the friendship graph,
and the initial number of edges in the transportation graph (,).

The following lines contain two integers and each (,) — an edge of a graph. The first
of them define the friendship graph, and the next define the transportation graph.

The next line contains the integer () — the number of requests and updates to be done. Each of the
following lines is a request or update.

"F " adds an between and (,) in the friendship graph. It is guaranteed that there was no
edge in the friendship graph before the update.
"T " adds an between and (,) in the transportation graph. It is guaranteed that there
was no edge in the transportation graph before the update.
"? " means that your program should print the number of neighbors of () in the current friendship
graph that are reachable from in the current transportation graph.

Output
For each request "? " print the answer on a new line.

input
4	2	2
1	2
1	3
1	2
1	4
5
?	1
F	4	1
?	1
T	4	3
?	1

!
"

#

$
$ $

! " #
1 ≤ ! ≤ 105 0 ≤ ", # ≤ 105

" + # % & 1 ≤ %, & ≤ ! % ≠ & "
#

' 0 ≤ ' ≤ 105

'

% & % & 1 ≤ %, & ≤ ! % ≠ &
(%, &)

% & % & 1 ≤ %, & ≤ ! % ≠ &
(%, &)

$ $ 1 ≤ $ ≤ !
$

$

output
1
2
3

B. A Two-Disk Cover
1 s., 256 MB

You're given a list of points in the plane. You're also told the location of the centers of two disks, and . The
goal is to determine the radii of the two disks and such that each of the points of lies inside one or both of the
disks. Compute the minimum possible value of under these constraints.

Input
The first line contains four integers ,), (,), the location of the centers of the two disks. The second line
contains an integer (), which is the number of points in the list . Each of the next lines contains two
integers and , where is a point in . The coordinates af the centers of the disks and the points of are all at
most 1000 in absolute value.

Output
Output one integer, the minimum possible value of , under the circumstances.

input
0	0	10	0
2
-3	3
10	0

input

0	0	6	0
5
-4	-2
-2	3
4	0
6	-2
9	1

The following figure illustrates sample 2. In the optimal solution the two radii are and .

(!)1)2
*1 *2 (

+*2
1 *2

2

(+1 ,1 +2 ,2
! 1 ≤ ! ≤ 105 (!

+ , (+, ,) ((

+*2
1 *2

2

output

18

output
30

20‾‾‾√ 10‾‾‾√

C. Particle Partition
1 s., 256 MB

There is an ordered list of particles, the th of which has a mass and a maximum speed of . The goal is to
partition the list into groups of consecutive particles in such a way as to minimize the time it takes them to pass the
obstacle.

To pass the obstacle the group must have a total weight of at most . The length of the obstacle is . The time it
takes a group to pass an obstacle is divide by the speed of the slowest particle in the group.

The first group enters the obstacle at time . After that group completes its pass through the obstacle the second
group enters the obstacle. When it's finished, the third group enters, etc.

The completion time is defined as the time that the last group exits the obstacle.

Input
The first line contains three integers, , the upper bound on the weight of a group, , the
length of the obstacle (in meters), and , the number particles in the list.

Each of the next lines contains two integers: , the weight of each particle, and , the
speed of each particle (in meters/second).

Output
The output is a single real number indicating the total time (in seconds), with at least eight digits after the decimal
point.

input
100	5	10
40	25
50	20
50	20
70	10
12	50
9	70
49	30
38	25
27	50
19	70

! - .- /-

0 (
(

0

0 ≤ − 1231 (≤ − 1231

! ≤ 1000
! ≤ 0.- 1 ≤ ≤ − 1/- 231

output

75.00000000

D. Equivalent Spanning Trees
3 s., 1024 MB

You're given a list of weighted spanning trees on nodes numbered . A spanning tree in this list defines
a bottleneck cost between each pair of nodes and – it's the minimum cost edge on the path from to
in .

Two spanning trees and are equivalent if for all we have .

The goal of this problem is to determine the equivalences class of each of the spanning trees in the list.

Input
The first line contains two integers and with , , and .

Following this are lines. The first of them define the first spanning tree, and so on. Each line is of the
form , which defines an edge from node to node of cost . So , , and .

Output
The output is just one line with integers. The th number should be the minimum index , where the th spanning
tree in the input is equivalent to the th network in the input.

input
3	3
1	2	1
1	3	1
1	2	1
2	3	1
1	2	1
2	3	2

input

3	4
1	2	2
2	3	1
3	4	2
1	3	2
2	4	2
2	3	1
1	2	2
1	3	1
3	4	2

1 ! 1, 2, … , ! 2
(-, 3)BC2 - 3 - 3

2

4 2 1 ≤ - < 3 ≤ ! (-, 3) = (-, 3)BC4 BC2

1

1 ! 1 ≤ 1 2 ≤ ! ! ⋅ 1 ≤ /2106

1 ⋅ (! − 1) ! − 1
% &) % &) 1 ≤ %, & ≤ ! % ≠ & 1 ≤) ≤ 109

1 - 3 3
-

output

1	1	3	

output
1	2	1	

E. Simulate the Machine
4 s., 1024 MB

The machine has registers , each containing an 8-bit byte. A program is a sequence of operations. Each
operation is a pair , meaning that the machine does the assignment . (OR is the usual bitwise or
operation.)

So, a program is specified, along with the initial values of all the registers, and an integer . We're going to run the
program for steps. If the program comes to the end and there are more steps to go, it just starts over again. This
process continues until steps have been done.

The goal is to efficiently compute the final value of all the registers, even though the number of steps you might have to
simulate is insane.

Input
The first line contains three integers , , and , with and . is the length of the
program.

The next lines contain the program. Each of these lines contains and , the register numbers of the operation. (
).

The last line contains integers in the range 0 to 255, which specify the initial values of the registers.

Output
Print out the final register values (after steps of simulation) in the same format as the last line of of the input.

input
5	4	5
1	2
2	3
2	4
4	4
8	0	5	3	10

! , … ,+1 +!
(%, &) ← OR+% +% +&

5 /
/

/

! (/ 1 ≤ !, (≤ 218 1 ≤ / ≤ 1018 (

(% &
1 ≤ %, & ≤ !

!

/

output

15	7	5	3	10	

F. Not Quite Scrabble
2 s., 256 MB

It all starts with Scrabble trays with letters in them. The trays are numbered 1 through . The letters in the th tray are
represented by a string . You're going to (try) to build a goal word in your own Scrabble tray by raiding letters in the
other Scrabble trays.

But there are some rules and regulations. For each tray there is a limit on the number of letters that can be stolen
from it. Also, the letters have a cost associated with them. The letters in tray cost dollars to use.

Your goal is to compute the minimum total cost needed to build .

Input
The input begins with your goal string on a line by itself. The next line contains () the number of trays
you have to work from. Each of the next lines contain a string , followed by .

The strings are all non-empty, and consist of lower case Latin letters. The total length of all the strings does not exceed
100.

Output
Print the minimum cost of a solution, or -1 if there is no solution.

input
jjaze
3
jzj	2
aej	3
ja	10

input

wbwcwbw
4
wbw	2
bcc	1
cww	2
bbb	5

! ! -
6- 7

- 8-
- -

7

7 ! 1 ≤ ! ≤ 100
! 6- 8-

output

8

output
18

G. Simple Linkages
1 s., 256 MB

You're given a linkage system consisting of links. The system is restricted to operate in two dimensions. One end of
link 1 is pinned in a flexible manner to the point . The other end of link 1 is pinned to link 2, also in a flexible
manner. The construction continues up to the th link. Although the links are connected together, they do not
otherwise interfere with each other.

The goal is to get the far end of link as close as possible to some specified target point .

Input
The first line contains , the number of links in the linkage. Each of the following lines contain an integer , the
length of the th link. The final link contains two more integers, the target point .

The bounds on these inputs are: , , and the absolute values of the target coordinates do
not exceed .

Output
The output consists of lines, each containing two real numbers and , indicating the coordinates of the tip of the
th link. The length of each link, as derived from your numbers should not differ from the actual length by more than

. Also, your solution's distance to the target should not differ by more than from that of the correct solution.

!
(0, 0)

!

! (+, ,)

! ! (-
- (+, ,)

1 ≤ ! ≤ 20 1 ≤ ≤ 1000(-
2 × 104

! +- ,-
-
.01 .01

H. Roller Coaster
1 second, 256 megabytes

Yihan recently received the job to design and test roller coasters for amusement parks. The safety and security of roller
coasters are of great importance, so each design needs careful simulation to make sure everything is alright.

Hence, before a roller coaster is installed, it has to be run on a simulated track. A simulated track consists of rails
attached end-to-end with the beginning of the first rail fixed at elevation 0. Yihan can reconfigure the track at will by
adjusting the elevation change over a number of consecutive rails. The elevation change over other rails is not
affected. Each time rails are adjusted, the following track is raised or lowered as necessary to connect the track while
maintaining the start at elevation 0. The figure on the next page illustrates the track reconfigurations for the sample
input.

Each ride is initiated by launching the car with sufficient energy to reach height . That is, the car will continue to travel
as long as the elevation of the track does not exceed , and as long as the end of the track is not reached. Given the
record for all the day's rides and track configuration changes, compute for each ride the number of rails traversed by
the car before it stops.

Internally, the simulator represents the track as a sequence of elevation changes, one for each rail. The -th number
 represents the elevation change (in centimeters) over the -th rail. Suppose that after traversing rails, the car

has reached an elevation of centimetres. After traversing rails, the car will have reached an elevation of
centimeters. Initially the rails are horizontal; that is, for all . Rides and reconfigurations are interleaved
throughout the day. Each reconfiguration is specified by three numbers: , and . The segment to be adjusted
consists of rails a through (inclusive). The elevation change over each rail in the segment is set to . That is,
for all . Each ride is specified by one number —the maximum height that the car can reach.

Your task is to write a program that reads from the standard input a sequence of interleaved reconfigurations and
rides, and computes the number of rails traversed by the car for each ride.

Input
The first line of input contains one positive integer — the number of rails, . The following lines contain
reconfigurations interleaved with rides, followed by an end marker. Each line contains one of:

Reconfiguration — a single letter "I", and integers , and , all separated by single spaces (,
),

Ride — a single letter "Q", and an integer () separated by a single space,
A single letter "E"—the end marker, indicating the end of the input data.

You may assume that at any moment the elevation of any point in the track is in the interval centimeters. The
input contains no more than lines.

Output
The -th line of output should consist of one integer—the number of rails traversed by the car during the -th ride.

input

4
Q	1
I	1	4	2
Q	3
Q	1
I	2	2	-1
Q	3
E

Views of the track before and after each reconfiguration. The axis denotes the rail number. The axis and the
numbers over points denote elevation. The numbers over segments denote elevation changes.

!

ℎ
ℎ

! -
1- - - − 1

ℎ - ℎ + 1-
= 01- -

% & :
& : = :1-

% ≤ - ≤ & ℎ

! 1 ≤ ! ≤ 109

% & : 1 ≤ % ≤ & ≤ !
− ≤ : ≤109 109

ℎ 0 ≤ ℎ ≤ 109

[0,]109

105

- -

output
4
1
0
3

+ ,

12/1/21, 6'19 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/211201/Problems.html

15-295 Fall 2021 #14 Selection Round 2

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Visiting Your Friends
2 s., 512 MB

There are two graphs defined over the same set of nodes. There's a friendship graph, and a transportation graph.
Both of these are undirected, unweighted, simple graphs. Initially the friendship graph has edges and the
transportation graph has edges.

The set of nodes never changes, but new edges can be added over time to either graph. Edges are never removed. As
the graphs evolve, there are queries that must be answered. A query specifies a vertex , and it requires you to count
the number of neighbors of in the current friendship graph that are reachable from in the current transportation
graph.

Input
The first line contains three integers , , — number of nodes, the initial number of edges in the friendship graph,
and the initial number of edges in the transportation graph (,).

The following lines contain two integers and each (,) — an edge of a graph. The first
of them define the friendship graph, and the next define the transportation graph.

The next line contains the integer () — the number of requests and updates to be done. Each of the
following lines is a request or update.

"F " adds an between and (,) in the friendship graph. It is guaranteed that there was no
edge in the friendship graph before the update.
"T " adds an between and (,) in the transportation graph. It is guaranteed that there
was no edge in the transportation graph before the update.
"? " means that your program should print the number of neighbors of () in the current friendship
graph that are reachable from in the current transportation graph.

Output
For each request "? " print the answer on a new line.

input
4	2	2
1	2
1	3
1	2
1	4
5
?	1
F	4	1
?	1
T	4	3
?	1

!
"

#

$
$ $

! " #
1 ≤ ! ≤ 105 0 ≤ ", # ≤ 105

" + # % & 1 ≤ %, & ≤ ! % ≠ & "
#

' 0 ≤ ' ≤ 105

'

% & % & 1 ≤ %, & ≤ ! % ≠ &
(%, &)

% & % & 1 ≤ %, & ≤ ! % ≠ &
(%, &)

$ $ 1 ≤ $ ≤ !
$

$

output
1
2
3

B. A Two-Disk Cover
1 s., 256 MB

You're given a list of points in the plane. You're also told the location of the centers of two disks, and . The
goal is to determine the radii of the two disks and such that each of the points of lies inside one or both of the
disks. Compute the minimum possible value of under these constraints.

Input
The first line contains four integers ,), (,), the location of the centers of the two disks. The second line
contains an integer (), which is the number of points in the list . Each of the next lines contains two
integers and , where is a point in . The coordinates af the centers of the disks and the points of are all at
most 1000 in absolute value.

Output
Output one integer, the minimum possible value of , under the circumstances.

input
0	0	10	0
2
-3	3
10	0

input

0	0	6	0
5
-4	-2
-2	3
4	0
6	-2
9	1

The following figure illustrates sample 2. In the optimal solution the two radii are and .

(!)1)2
*1 *2 (

+*2
1 *2

2

(+1 ,1 +2 ,2
! 1 ≤ ! ≤ 105 (!

+ , (+, ,) ((

+*2
1 *2

2

output

18

output
30

20‾‾‾√ 10‾‾‾√

C. Particle Partition
1 s., 256 MB

There is an ordered list of particles, the th of which has a mass and a maximum speed of . The goal is to
partition the list into groups of consecutive particles in such a way as to minimize the time it takes them to pass the
obstacle.

To pass the obstacle the group must have a total weight of at most . The length of the obstacle is . The time it
takes a group to pass an obstacle is divide by the speed of the slowest particle in the group.

The first group enters the obstacle at time . After that group completes its pass through the obstacle the second
group enters the obstacle. When it's finished, the third group enters, etc.

The completion time is defined as the time that the last group exits the obstacle.

Input
The first line contains three integers, , the upper bound on the weight of a group, , the
length of the obstacle (in meters), and , the number particles in the list.

Each of the next lines contains two integers: , the weight of each particle, and , the
speed of each particle (in meters/second).

Output
The output is a single real number indicating the total time (in seconds), with at least eight digits after the decimal
point.

input
100	5	10
40	25
50	20
50	20
70	10
12	50
9	70
49	30
38	25
27	50
19	70

! - .- /-

0 (
(

0

0 ≤ − 1231 (≤ − 1231

! ≤ 1000
! ≤ 0.- 1 ≤ ≤ − 1/- 231

output

75.00000000

D. Equivalent Spanning Trees
3 s., 1024 MB

You're given a list of weighted spanning trees on nodes numbered . A spanning tree in this list defines
a bottleneck cost between each pair of nodes and – it's the minimum cost edge on the path from to
in .

Two spanning trees and are equivalent if for all we have .

The goal of this problem is to determine the equivalences class of each of the spanning trees in the list.

Input
The first line contains two integers and with , , and .

Following this are lines. The first of them define the first spanning tree, and so on. Each line is of the
form , which defines an edge from node to node of cost . So , , and .

Output
The output is just one line with integers. The th number should be the minimum index , where the th spanning
tree in the input is equivalent to the th network in the input.

input
3	3
1	2	1
1	3	1
1	2	1
2	3	1
1	2	1
2	3	2

input

3	4
1	2	2
2	3	1
3	4	2
1	3	2
2	4	2
2	3	1
1	2	2
1	3	1
3	4	2

1 ! 1, 2, … , ! 2
(-, 3)BC2 - 3 - 3

2

4 2 1 ≤ - < 3 ≤ ! (-, 3) = (-, 3)BC4 BC2

1

1 ! 1 ≤ 1 2 ≤ ! ! ⋅ 1 ≤ /2106

1 ⋅ (! − 1) ! − 1
% &) % &) 1 ≤ %, & ≤ ! % ≠ & 1 ≤) ≤ 109

1 - 3 3
-

output

1	1	3	

output
1	2	1	

E. Simulate the Machine
4 s., 1024 MB

The machine has registers , each containing an 8-bit byte. A program is a sequence of operations. Each
operation is a pair , meaning that the machine does the assignment . (OR is the usual bitwise or
operation.)

So, a program is specified, along with the initial values of all the registers, and an integer . We're going to run the
program for steps. If the program comes to the end and there are more steps to go, it just starts over again. This
process continues until steps have been done.

The goal is to efficiently compute the final value of all the registers, even though the number of steps you might have to
simulate is insane.

Input
The first line contains three integers , , and , with and . is the length of the
program.

The next lines contain the program. Each of these lines contains and , the register numbers of the operation. (
).

The last line contains integers in the range 0 to 255, which specify the initial values of the registers.

Output
Print out the final register values (after steps of simulation) in the same format as the last line of of the input.

input
5	4	5
1	2
2	3
2	4
4	4
8	0	5	3	10

! , … ,+1 +!
(%, &) ← OR+% +% +&

5 /
/

/

! (/ 1 ≤ !, (≤ 218 1 ≤ / ≤ 1018 (

(% &
1 ≤ %, & ≤ !

!

/

output

15	7	5	3	10	

F. Not Quite Scrabble
2 s., 256 MB

It all starts with Scrabble trays with letters in them. The trays are numbered 1 through . The letters in the th tray are
represented by a string . You're going to (try) to build a goal word in your own Scrabble tray by raiding letters in the
other Scrabble trays.

But there are some rules and regulations. For each tray there is a limit on the number of letters that can be stolen
from it. Also, the letters have a cost associated with them. The letters in tray cost dollars to use.

Your goal is to compute the minimum total cost needed to build .

Input
The input begins with your goal string on a line by itself. The next line contains () the number of trays
you have to work from. Each of the next lines contain a string , followed by .

The strings are all non-empty, and consist of lower case Latin letters. The total length of all the strings does not exceed
100.

Output
Print the minimum cost of a solution, or -1 if there is no solution.

input
jjaze
3
jzj	2
aej	3
ja	10

input

wbwcwbw
4
wbw	2
bcc	1
cww	2
bbb	5

! ! -
6- 7

- 8-
- -

7

7 ! 1 ≤ ! ≤ 100
! 6- 8-

output

8

output
18

G. Simple Linkages
1 s., 256 MB

You're given a linkage system consisting of links. The system is restricted to operate in two dimensions. One end of
link 1 is pinned in a flexible manner to the point . The other end of link 1 is pinned to link 2, also in a flexible
manner. The construction continues up to the th link. Although the links are connected together, they do not
otherwise interfere with each other.

The goal is to get the far end of link as close as possible to some specified target point .

Input
The first line contains , the number of links in the linkage. Each of the following lines contain an integer , the
length of the th link. The final link contains two more integers, the target point .

The bounds on these inputs are: , , and the absolute values of the target coordinates do
not exceed .

Output
The output consists of lines, each containing two real numbers and , indicating the coordinates of the tip of the
th link. The length of each link, as derived from your numbers should not differ from the actual length by more than

. Also, your solution's distance to the target should not differ by more than from that of the correct solution.

!
(0, 0)

!

! (+, ,)

! ! (-
- (+, ,)

1 ≤ ! ≤ 20 1 ≤ ≤ 1000(-
2 × 104

! +- ,-
-
.01 .01

H. Roller Coaster
1 second, 256 megabytes

Yihan recently received the job to design and test roller coasters for amusement parks. The safety and security of roller
coasters are of great importance, so each design needs careful simulation to make sure everything is alright.

Hence, before a roller coaster is installed, it has to be run on a simulated track. A simulated track consists of rails
attached end-to-end with the beginning of the first rail fixed at elevation 0. Yihan can reconfigure the track at will by
adjusting the elevation change over a number of consecutive rails. The elevation change over other rails is not
affected. Each time rails are adjusted, the following track is raised or lowered as necessary to connect the track while
maintaining the start at elevation 0. The figure on the next page illustrates the track reconfigurations for the sample
input.

Each ride is initiated by launching the car with sufficient energy to reach height . That is, the car will continue to travel
as long as the elevation of the track does not exceed , and as long as the end of the track is not reached. Given the
record for all the day's rides and track configuration changes, compute for each ride the number of rails traversed by
the car before it stops.

Internally, the simulator represents the track as a sequence of elevation changes, one for each rail. The -th number
 represents the elevation change (in centimeters) over the -th rail. Suppose that after traversing rails, the car

has reached an elevation of centimetres. After traversing rails, the car will have reached an elevation of
centimeters. Initially the rails are horizontal; that is, for all . Rides and reconfigurations are interleaved
throughout the day. Each reconfiguration is specified by three numbers: , and . The segment to be adjusted
consists of rails a through (inclusive). The elevation change over each rail in the segment is set to . That is,
for all . Each ride is specified by one number —the maximum height that the car can reach.

Your task is to write a program that reads from the standard input a sequence of interleaved reconfigurations and
rides, and computes the number of rails traversed by the car for each ride.

Input
The first line of input contains one positive integer — the number of rails, . The following lines contain
reconfigurations interleaved with rides, followed by an end marker. Each line contains one of:

Reconfiguration — a single letter "I", and integers , and , all separated by single spaces (,
),

Ride — a single letter "Q", and an integer () separated by a single space,
A single letter "E"—the end marker, indicating the end of the input data.

You may assume that at any moment the elevation of any point in the track is in the interval centimeters. The
input contains no more than lines.

Output
The -th line of output should consist of one integer—the number of rails traversed by the car during the -th ride.

input

4
Q	1
I	1	4	2
Q	3
Q	1
I	2	2	-1
Q	3
E

Views of the track before and after each reconfiguration. The axis denotes the rail number. The axis and the
numbers over points denote elevation. The numbers over segments denote elevation changes.

!

ℎ
ℎ

! -
1- - - − 1

ℎ - ℎ + 1-
= 01- -

% & :
& : = :1-

% ≤ - ≤ & ℎ

! 1 ≤ ! ≤ 109

% & : 1 ≤ % ≤ & ≤ !
− ≤ : ≤109 109

ℎ 0 ≤ ℎ ≤ 109

[0,]109

105

- -

output
4
1
0
3

+ ,

12/1/21, 6'27 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/211201/Problems.html

15-295 Fall 2021 #14 Selection Round 2

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Visiting Your Friends
2 s., 512 MB

There are two graphs defined over the same set of nodes. There's a friendship graph, and a transportation graph.
Both of these are undirected, unweighted, simple graphs. Initially the friendship graph has edges and the
transportation graph has edges.

The set of nodes never changes, but new edges can be added over time to either graph. Edges are never removed. As
the graphs evolve, there are queries that must be answered. A query specifies a vertex , and it requires you to count
the number of neighbors of in the current friendship graph that are reachable from in the current transportation
graph.

Input
The first line contains three integers , , — number of nodes, the initial number of edges in the friendship graph,
and the initial number of edges in the transportation graph (,).

The following lines contain two integers and each (,) — an edge of a graph. The first
of them define the friendship graph, and the next define the transportation graph.

The next line contains the integer () — the number of requests and updates to be done. Each of the
following lines is a request or update.

"F " adds an between and (,) in the friendship graph. It is guaranteed that there was no
edge in the friendship graph before the update.
"T " adds an between and (,) in the transportation graph. It is guaranteed that there
was no edge in the transportation graph before the update.
"? " means that your program should print the number of neighbors of () in the current friendship
graph that are reachable from in the current transportation graph.

Output
For each request "? " print the answer on a new line.

input
4	2	2
1	2
1	3
1	2
1	4
5
?	1
F	4	1
?	1
T	4	3
?	1

!
"

#

$
$ $

! " #
1 ≤ ! ≤ 105 0 ≤ ", # ≤ 105

" + # % & 1 ≤ %, & ≤ ! % ≠ & "
#

' 0 ≤ ' ≤ 105

'

% & % & 1 ≤ %, & ≤ ! % ≠ &
(%, &)

% & % & 1 ≤ %, & ≤ ! % ≠ &
(%, &)

$ $ 1 ≤ $ ≤ !
$

$

output
1
2
3

B. A Two-Disk Cover
1 s., 256 MB

You're given a list of points in the plane. You're also told the location of the centers of two disks, and . The
goal is to determine the radii of the two disks and such that each of the points of lies inside one or both of the
disks. Compute the minimum possible value of under these constraints.

Input
The first line contains four integers ,), (,), the location of the centers of the two disks. The second line
contains an integer (), which is the number of points in the list . Each of the next lines contains two
integers and , where is a point in . The coordinates af the centers of the disks and the points of are all at
most 1000 in absolute value.

Output
Output one integer, the minimum possible value of , under the circumstances.

input
0	0	10	0
2
-3	3
10	0

input

0	0	6	0
5
-4	-2
-2	3
4	0
6	-2
9	1

The following figure illustrates sample 2. In the optimal solution the two radii are and .

(!)1)2
*1 *2 (

+*2
1 *2

2

(+1 ,1 +2 ,2
! 1 ≤ ! ≤ 105 (!

+ , (+, ,) ((

+*2
1 *2

2

output

18

output
30

20‾‾‾√ 10‾‾‾√

C. Particle Partition
1 s., 256 MB

There is an ordered list of particles, the th of which has a mass and a maximum speed of . The goal is to
partition the list into groups of consecutive particles in such a way as to minimize the time it takes them to pass the
obstacle.

To pass the obstacle the group must have a total weight of at most . The length of the obstacle is . The time it
takes a group to pass an obstacle is divide by the speed of the slowest particle in the group.

The first group enters the obstacle at time . After that group completes its pass through the obstacle the second
group enters the obstacle. When it's finished, the third group enters, etc.

The completion time is defined as the time that the last group exits the obstacle.

Input
The first line contains three integers, , the upper bound on the weight of a group, , the
length of the obstacle (in meters), and , the number particles in the list.

Each of the next lines contains two integers: , the weight of each particle, and , the
speed of each particle (in meters/second).

Output
The output is a single real number indicating the total time (in seconds), with at least eight digits after the decimal
point.

input
100	5	10
40	25
50	20
50	20
70	10
12	50
9	70
49	30
38	25
27	50
19	70

! - .- /-

0 (
(

0

0 ≤ − 1231 (≤ − 1231

! ≤ 1000
! ≤ 0.- 1 ≤ ≤ − 1/- 231

output

75.00000000

D. Equivalent Spanning Trees
3 s., 1024 MB

You're given a list of weighted spanning trees on nodes numbered . A spanning tree in this list defines
a bottleneck cost between each pair of nodes and – it's the minimum cost edge on the path from to
in .

Two spanning trees and are equivalent if for all we have .

The goal of this problem is to determine the equivalences class of each of the spanning trees in the list.

Input
The first line contains two integers and with , , and .

Following this are lines. The first of them define the first spanning tree, and so on. Each line is of the
form , which defines an edge from node to node of cost . So , , and .

Output
The output is just one line with integers. The th number should be the minimum index , where the th spanning
tree in the input is equivalent to the th network in the input.

input
3	3
1	2	1
1	3	1
1	2	1
2	3	1
1	2	1
2	3	2

input

3	4
1	2	2
2	3	1
3	4	2
1	3	2
2	4	2
2	3	1
1	2	2
1	3	1
3	4	2

1 ! 1, 2, … , ! 2
(-, 3)BC2 - 3 - 3

2

4 2 1 ≤ - < 3 ≤ ! (-, 3) = (-, 3)BC4 BC2

1

1 ! 1 ≤ 1 2 ≤ ! ! ⋅ 1 ≤ /2106

1 ⋅ (! − 1) ! − 1
% &) % &) 1 ≤ %, & ≤ ! % ≠ & 1 ≤) ≤ 109

1 - 3 3
-

output

1	1	3	

output
1	2	1	

E. Simulate the Machine
4 s., 1024 MB

The machine has registers , each containing an 8-bit byte. A program is a sequence of operations. Each
operation is a pair , meaning that the machine does the assignment . (OR is the usual bitwise or
operation.)

So, a program is specified, along with the initial values of all the registers, and an integer . We're going to run the
program for steps. If the program comes to the end and there are more steps to go, it just starts over again. This
process continues until steps have been done.

The goal is to efficiently compute the final value of all the registers, even though the number of steps you might have to
simulate is insane.

Input
The first line contains three integers , , and , with and . is the length of the
program.

The next lines contain the program. Each of these lines contains and , the register numbers of the operation. (
).

The last line contains integers in the range 0 to 255, which specify the initial values of the registers.

Output
Print out the final register values (after steps of simulation) in the same format as the last line of of the input.

input
5	4	5
1	2
2	3
2	4
4	4
8	0	5	3	10

! , … ,+1 +!
(%, &) ← OR+% +% +&

5 /
/

/

! (/ 1 ≤ !, (≤ 218 1 ≤ / ≤ 1018 (

(% &
1 ≤ %, & ≤ !

!

/

output

15	7	5	3	10	

F. Not Quite Scrabble
2 s., 256 MB

It all starts with Scrabble trays with letters in them. The trays are numbered 1 through . The letters in the th tray are
represented by a string . You're going to (try) to build a goal word in your own Scrabble tray by raiding letters in the
other Scrabble trays.

But there are some rules and regulations. For each tray there is a limit on the number of letters that can be stolen
from it. Also, the letters have a cost associated with them. The letters in tray cost dollars to use.

Your goal is to compute the minimum total cost needed to build .

Input
The input begins with your goal string on a line by itself. The next line contains () the number of trays
you have to work from. Each of the next lines contain a string , followed by .

The strings are all non-empty, and consist of lower case Latin letters. The total length of all the strings does not exceed
100.

Output
Print the minimum cost of a solution, or -1 if there is no solution.

input
jjaze
3
jzj	2
aej	3
ja	10

input

wbwcwbw
4
wbw	2
bcc	1
cww	2
bbb	5

! ! -
6- 7

- 8-
- -

7

7 ! 1 ≤ ! ≤ 100
! 6- 8-

output

8

output
18

G. Simple Linkages
1 s., 256 MB

You're given a linkage system consisting of links. The system is restricted to operate in two dimensions. One end of
link 1 is pinned in a flexible manner to the point . The other end of link 1 is pinned to link 2, also in a flexible
manner. The construction continues up to the th link. Although the links are connected together, they do not
otherwise interfere with each other.

The goal is to get the far end of link as close as possible to some specified target point .

Input
The first line contains , the number of links in the linkage. Each of the following lines contain an integer , the
length of the th link. The final link contains two more integers, the target point .

The bounds on these inputs are: , , and the absolute values of the target coordinates do
not exceed .

Output
The output consists of lines, each containing two real numbers and , indicating the coordinates of the tip of the
th link. The length of each link, as derived from your numbers should not differ from the actual length by more than

. Also, your solution's distance to the target should not differ by more than from that of the correct solution.

input
3
5
3
4
5	3

input

2
4
2
-8	-3

!
(0, 0)

!

! (+, ,)

! ! (-
- (+, ,)

1 ≤ ! ≤ 20 1 ≤ ≤ 1000(-
2 × 104

! +- ,-
-
.01 .01

output
4.114	-2.842
6.297	-0.784
5.000	3.000

output
-3.745	-1.404
-5.618	-2.107

H. Roller Coaster
1 second, 256 megabytes

Yihan recently received the job to design and test roller coasters for amusement parks. The safety and security of roller
coasters are of great importance, so each design needs careful simulation to make sure everything is alright.

Hence, before a roller coaster is installed, it has to be run on a simulated track. A simulated track consists of rails
attached end-to-end with the beginning of the first rail fixed at elevation 0. Yihan can reconfigure the track at will by
adjusting the elevation change over a number of consecutive rails. The elevation change over other rails is not
affected. Each time rails are adjusted, the following track is raised or lowered as necessary to connect the track while
maintaining the start at elevation 0. The figure on the next page illustrates the track reconfigurations for the sample
input.

Each ride is initiated by launching the car with sufficient energy to reach height . That is, the car will continue to travel
as long as the elevation of the track does not exceed , and as long as the end of the track is not reached. Given the
record for all the day's rides and track configuration changes, compute for each ride the number of rails traversed by
the car before it stops.

Internally, the simulator represents the track as a sequence of elevation changes, one for each rail. The -th number
 represents the elevation change (in centimeters) over the -th rail. Suppose that after traversing rails, the car

has reached an elevation of centimetres. After traversing rails, the car will have reached an elevation of
centimeters. Initially the rails are horizontal; that is, for all . Rides and reconfigurations are interleaved
throughout the day. Each reconfiguration is specified by three numbers: , and . The segment to be adjusted
consists of rails a through (inclusive). The elevation change over each rail in the segment is set to . That is,
for all . Each ride is specified by one number —the maximum height that the car can reach.

Your task is to write a program that reads from the standard input a sequence of interleaved reconfigurations and
rides, and computes the number of rails traversed by the car for each ride.

Input
The first line of input contains one positive integer — the number of rails, . The following lines contain
reconfigurations interleaved with rides, followed by an end marker. Each line contains one of:

Reconfiguration — a single letter "I", and integers , and , all separated by single spaces (,
),

Ride — a single letter "Q", and an integer () separated by a single space,
A single letter "E"—the end marker, indicating the end of the input data.

You may assume that at any moment the elevation of any point in the track is in the interval centimeters. The
input contains no more than lines.

Output
The -th line of output should consist of one integer—the number of rails traversed by the car during the -th ride.

input
4
Q	1
I	1	4	2
Q	3
Q	1
I	2	2	-1
Q	3
E

Views of the track before and after each reconfiguration. The axis denotes the rail number. The axis and the
numbers over points denote elevation. The numbers over segments denote elevation changes.

!

ℎ
ℎ

! -
1- - - − 1

ℎ - ℎ + 1-
= 01- -

% & :
& : = :1-

% ≤ - ≤ & ℎ

! 1 ≤ ! ≤ 109

% & : 1 ≤ % ≤ & ≤ !
− ≤ : ≤109 109

ℎ 0 ≤ ℎ ≤ 109

[0,]109

105

- -

output
4
1
0
3

+ ,

12/1/21, 6'27 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/211201/Problems.html

15-295 Fall 2021 #14 Selection Round 2

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Visiting Your Friends
2 s., 512 MB

There are two graphs defined over the same set of nodes. There's a friendship graph, and a transportation graph.
Both of these are undirected, unweighted, simple graphs. Initially the friendship graph has edges and the
transportation graph has edges.

The set of nodes never changes, but new edges can be added over time to either graph. Edges are never removed. As
the graphs evolve, there are queries that must be answered. A query specifies a vertex , and it requires you to count
the number of neighbors of in the current friendship graph that are reachable from in the current transportation
graph.

Input
The first line contains three integers , , — number of nodes, the initial number of edges in the friendship graph,
and the initial number of edges in the transportation graph (,).

The following lines contain two integers and each (,) — an edge of a graph. The first
of them define the friendship graph, and the next define the transportation graph.

The next line contains the integer () — the number of requests and updates to be done. Each of the
following lines is a request or update.

"F " adds an between and (,) in the friendship graph. It is guaranteed that there was no
edge in the friendship graph before the update.
"T " adds an between and (,) in the transportation graph. It is guaranteed that there
was no edge in the transportation graph before the update.
"? " means that your program should print the number of neighbors of () in the current friendship
graph that are reachable from in the current transportation graph.

Output
For each request "? " print the answer on a new line.

input
4	2	2
1	2
1	3
1	2
1	4
5
?	1
F	4	1
?	1
T	4	3
?	1

!
"

#

$
$ $

! " #
1 ≤ ! ≤ 105 0 ≤ ", # ≤ 105

" + # % & 1 ≤ %, & ≤ ! % ≠ & "
#

' 0 ≤ ' ≤ 105

'

% & % & 1 ≤ %, & ≤ ! % ≠ &
(%, &)

% & % & 1 ≤ %, & ≤ ! % ≠ &
(%, &)

$ $ 1 ≤ $ ≤ !
$

$

output
1
2
3

B. A Two-Disk Cover
1 s., 256 MB

You're given a list of points in the plane. You're also told the location of the centers of two disks, and . The
goal is to determine the radii of the two disks and such that each of the points of lies inside one or both of the
disks. Compute the minimum possible value of under these constraints.

Input
The first line contains four integers ,), (,), the location of the centers of the two disks. The second line
contains an integer (), which is the number of points in the list . Each of the next lines contains two
integers and , where is a point in . The coordinates af the centers of the disks and the points of are all at
most 1000 in absolute value.

Output
Output one integer, the minimum possible value of , under the circumstances.

input
0	0	10	0
2
-3	3
10	0

input

0	0	6	0
5
-4	-2
-2	3
4	0
6	-2
9	1

The following figure illustrates sample 2. In the optimal solution the two radii are and .

(!)1)2
*1 *2 (

+*2
1 *2

2

(+1 ,1 +2 ,2
! 1 ≤ ! ≤ 105 (!

+ , (+, ,) ((

+*2
1 *2

2

output

18

output
30

20‾‾‾√ 10‾‾‾√

C. Particle Partition
1 s., 256 MB

There is an ordered list of particles, the th of which has a mass and a maximum speed of . The goal is to
partition the list into groups of consecutive particles in such a way as to minimize the time it takes them to pass the
obstacle.

To pass the obstacle the group must have a total weight of at most . The length of the obstacle is . The time it
takes a group to pass an obstacle is divide by the speed of the slowest particle in the group.

The first group enters the obstacle at time . After that group completes its pass through the obstacle the second
group enters the obstacle. When it's finished, the third group enters, etc.

The completion time is defined as the time that the last group exits the obstacle.

Input
The first line contains three integers, , the upper bound on the weight of a group, , the
length of the obstacle (in meters), and , the number particles in the list.

Each of the next lines contains two integers: , the weight of each particle, and , the
speed of each particle (in meters/second).

Output
The output is a single real number indicating the total time (in seconds), with at least eight digits after the decimal
point.

input
100	5	10
40	25
50	20
50	20
70	10
12	50
9	70
49	30
38	25
27	50
19	70

! - .- /-

0 (
(

0

0 ≤ − 1231 (≤ − 1231

! ≤ 1000
! ≤ 0.- 1 ≤ ≤ − 1/- 231

output

75.00000000

D. Equivalent Spanning Trees
3 s., 1024 MB

You're given a list of weighted spanning trees on nodes numbered . A spanning tree in this list defines
a bottleneck cost between each pair of nodes and – it's the minimum cost edge on the path from to
in .

Two spanning trees and are equivalent if for all we have .

The goal of this problem is to determine the equivalences class of each of the spanning trees in the list.

Input
The first line contains two integers and with , , and .

Following this are lines. The first of them define the first spanning tree, and so on. Each line is of the
form , which defines an edge from node to node of cost . So , , and .

Output
The output is just one line with integers. The th number should be the minimum index , where the th spanning
tree in the input is equivalent to the th network in the input.

input
3	3
1	2	1
1	3	1
1	2	1
2	3	1
1	2	1
2	3	2

input

3	4
1	2	2
2	3	1
3	4	2
1	3	2
2	4	2
2	3	1
1	2	2
1	3	1
3	4	2

1 ! 1, 2, … , ! 2
(-, 3)BC2 - 3 - 3

2

4 2 1 ≤ - < 3 ≤ ! (-, 3) = (-, 3)BC4 BC2

1

1 ! 1 ≤ 1 2 ≤ ! ! ⋅ 1 ≤ /2106

1 ⋅ (! − 1) ! − 1
% &) % &) 1 ≤ %, & ≤ ! % ≠ & 1 ≤) ≤ 109

1 - 3 3
-

output

1	1	3	

output
1	2	1	

E. Simulate the Machine
4 s., 1024 MB

The machine has registers , each containing an 8-bit byte. A program is a sequence of operations. Each
operation is a pair , meaning that the machine does the assignment . (OR is the usual bitwise or
operation.)

So, a program is specified, along with the initial values of all the registers, and an integer . We're going to run the
program for steps. If the program comes to the end and there are more steps to go, it just starts over again. This
process continues until steps have been done.

The goal is to efficiently compute the final value of all the registers, even though the number of steps you might have to
simulate is insane.

Input
The first line contains three integers , , and , with and . is the length of the
program.

The next lines contain the program. Each of these lines contains and , the register numbers of the operation. (
).

The last line contains integers in the range 0 to 255, which specify the initial values of the registers.

Output
Print out the final register values (after steps of simulation) in the same format as the last line of of the input.

input
5	4	5
1	2
2	3
2	4
4	4
8	0	5	3	10

! , … ,+1 +!
(%, &) ← OR+% +% +&

5 /
/

/

! (/ 1 ≤ !, (≤ 218 1 ≤ / ≤ 1018 (

(% &
1 ≤ %, & ≤ !

!

/

output

15	7	5	3	10	

F. Not Quite Scrabble
2 s., 256 MB

It all starts with Scrabble trays with letters in them. The trays are numbered 1 through . The letters in the th tray are
represented by a string . You're going to (try) to build a goal word in your own Scrabble tray by raiding letters in the
other Scrabble trays.

But there are some rules and regulations. For each tray there is a limit on the number of letters that can be stolen
from it. Also, the letters have a cost associated with them. The letters in tray cost dollars to use.

Your goal is to compute the minimum total cost needed to build .

Input
The input begins with your goal string on a line by itself. The next line contains () the number of trays
you have to work from. Each of the next lines contain a string , followed by .

The strings are all non-empty, and consist of lower case Latin letters. The total length of all the strings does not exceed
100.

Output
Print the minimum cost of a solution, or -1 if there is no solution.

input
jjaze
3
jzj	2
aej	3
ja	10

input

wbwcwbw
4
wbw	2
bcc	1
cww	2
bbb	5

! ! -
6- 7

- 8-
- -

7

7 ! 1 ≤ ! ≤ 100
! 6- 8-

output

8

output
18

G. Simple Linkages
1 s., 256 MB

You're given a linkage system consisting of links. The system is restricted to operate in two dimensions. One end of
link 1 is pinned in a flexible manner to the point . The other end of link 1 is pinned to link 2, also in a flexible
manner. The construction continues up to the th link. Although the links are connected together, they do not
otherwise interfere with each other.

The goal is to get the far end of link as close as possible to some specified target point .

Input
The first line contains , the number of links in the linkage. Each of the following lines contain an integer , the
length of the th link. The final link contains two more integers, the target point .

The bounds on these inputs are: , , and the absolute values of the target coordinates do
not exceed .

Output
The output consists of lines, each containing two real numbers and , indicating the coordinates of the tip of the
th link. The length of each link, as derived from your numbers should not differ from the actual length by more than

. Also, your solution's distance to the target should not differ by more than from that of the correct solution.

input
3
5
3
4
5	3

input

2
4
2
-8	-3

!
(0, 0)

!

! (+, ,)

! ! (-
- (+, ,)

1 ≤ ! ≤ 20 1 ≤ ≤ 1000(-
2 × 104

! +- ,-
-
.01 .01

output
4.114	-2.842
6.297	-0.784
5.000	3.000

output
-3.745	-1.404
-5.618	-2.107

H. Roller Coaster
1 second, 256 megabytes

Yihan recently received the job to design and test roller coasters for amusement parks. The safety and security of roller
coasters are of great importance, so each design needs careful simulation to make sure everything is alright.

Hence, before a roller coaster is installed, it has to be run on a simulated track. A simulated track consists of rails
attached end-to-end with the beginning of the first rail fixed at elevation 0. Yihan can reconfigure the track at will by
adjusting the elevation change over a number of consecutive rails. The elevation change over other rails is not
affected. Each time rails are adjusted, the following track is raised or lowered as necessary to connect the track while
maintaining the start at elevation 0. The figure on the next page illustrates the track reconfigurations for the sample
input.

Each ride is initiated by launching the car with sufficient energy to reach height . That is, the car will continue to travel
as long as the elevation of the track does not exceed , and as long as the end of the track is not reached. Given the
record for all the day's rides and track configuration changes, compute for each ride the number of rails traversed by
the car before it stops.

Internally, the simulator represents the track as a sequence of elevation changes, one for each rail. The -th number
 represents the elevation change (in centimeters) over the -th rail. Suppose that after traversing rails, the car

has reached an elevation of centimetres. After traversing rails, the car will have reached an elevation of
centimeters. Initially the rails are horizontal; that is, for all . Rides and reconfigurations are interleaved
throughout the day. Each reconfiguration is specified by three numbers: , and . The segment to be adjusted
consists of rails a through (inclusive). The elevation change over each rail in the segment is set to . That is,
for all . Each ride is specified by one number —the maximum height that the car can reach.

Your task is to write a program that reads from the standard input a sequence of interleaved reconfigurations and
rides, and computes the number of rails traversed by the car for each ride.

Input
The first line of input contains one positive integer — the number of rails, . The following lines contain
reconfigurations interleaved with rides, followed by an end marker. Each line contains one of:

Reconfiguration — a single letter "I", and integers , and , all separated by single spaces (,
),

Ride — a single letter "Q", and an integer () separated by a single space,
A single letter "E"—the end marker, indicating the end of the input data.

You may assume that at any moment the elevation of any point in the track is in the interval centimeters. The
input contains no more than lines.

Output
The -th line of output should consist of one integer—the number of rails traversed by the car during the -th ride.

input
4
Q	1
I	1	4	2
Q	3
Q	1
I	2	2	-1
Q	3
E

Views of the track before and after each reconfiguration. The axis denotes the rail number. The axis and the
numbers over points denote elevation. The numbers over segments denote elevation changes.

!

ℎ
ℎ

! -
1- - - − 1

ℎ - ℎ + 1-
= 01- -

% & :
& : = :1-

% ≤ - ≤ & ℎ

! 1 ≤ ! ≤ 109

% & : 1 ≤ % ≤ & ≤ !
− ≤ : ≤109 109

ℎ 0 ≤ ℎ ≤ 109

[0,]109

105

- -

output
4
1
0
3

+ ,

12/1/21, 6'27 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/211201/Problems.html

15-295 Fall 2021 #14 Selection Round 2

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Visiting Your Friends
2 s., 512 MB

There are two graphs defined over the same set of nodes. There's a friendship graph, and a transportation graph.
Both of these are undirected, unweighted, simple graphs. Initially the friendship graph has edges and the
transportation graph has edges.

The set of nodes never changes, but new edges can be added over time to either graph. Edges are never removed. As
the graphs evolve, there are queries that must be answered. A query specifies a vertex , and it requires you to count
the number of neighbors of in the current friendship graph that are reachable from in the current transportation
graph.

Input
The first line contains three integers , , — number of nodes, the initial number of edges in the friendship graph,
and the initial number of edges in the transportation graph (,).

The following lines contain two integers and each (,) — an edge of a graph. The first
of them define the friendship graph, and the next define the transportation graph.

The next line contains the integer () — the number of requests and updates to be done. Each of the
following lines is a request or update.

"F " adds an between and (,) in the friendship graph. It is guaranteed that there was no
edge in the friendship graph before the update.
"T " adds an between and (,) in the transportation graph. It is guaranteed that there
was no edge in the transportation graph before the update.
"? " means that your program should print the number of neighbors of () in the current friendship
graph that are reachable from in the current transportation graph.

Output
For each request "? " print the answer on a new line.

input
4	2	2
1	2
1	3
1	2
1	4
5
?	1
F	4	1
?	1
T	4	3
?	1

!
"

#

$
$ $

! " #
1 ≤ ! ≤ 105 0 ≤ ", # ≤ 105

" + # % & 1 ≤ %, & ≤ ! % ≠ & "
#

' 0 ≤ ' ≤ 105

'

% & % & 1 ≤ %, & ≤ ! % ≠ &
(%, &)

% & % & 1 ≤ %, & ≤ ! % ≠ &
(%, &)

$ $ 1 ≤ $ ≤ !
$

$

output
1
2
3

B. A Two-Disk Cover
1 s., 256 MB

You're given a list of points in the plane. You're also told the location of the centers of two disks, and . The
goal is to determine the radii of the two disks and such that each of the points of lies inside one or both of the
disks. Compute the minimum possible value of under these constraints.

Input
The first line contains four integers ,), (,), the location of the centers of the two disks. The second line
contains an integer (), which is the number of points in the list . Each of the next lines contains two
integers and , where is a point in . The coordinates af the centers of the disks and the points of are all at
most 1000 in absolute value.

Output
Output one integer, the minimum possible value of , under the circumstances.

input
0	0	10	0
2
-3	3
10	0

input

0	0	6	0
5
-4	-2
-2	3
4	0
6	-2
9	1

The following figure illustrates sample 2. In the optimal solution the two radii are and .

(!)1)2
*1 *2 (

+*2
1 *2

2

(+1 ,1 +2 ,2
! 1 ≤ ! ≤ 105 (!

+ , (+, ,) ((

+*2
1 *2

2

output

18

output
30

20‾‾‾√ 10‾‾‾√

C. Particle Partition
1 s., 256 MB

There is an ordered list of particles, the th of which has a mass and a maximum speed of . The goal is to
partition the list into groups of consecutive particles in such a way as to minimize the time it takes them to pass the
obstacle.

To pass the obstacle the group must have a total weight of at most . The length of the obstacle is . The time it
takes a group to pass an obstacle is divide by the speed of the slowest particle in the group.

The first group enters the obstacle at time . After that group completes its pass through the obstacle the second
group enters the obstacle. When it's finished, the third group enters, etc.

The completion time is defined as the time that the last group exits the obstacle.

Input
The first line contains three integers, , the upper bound on the weight of a group, , the
length of the obstacle (in meters), and , the number particles in the list.

Each of the next lines contains two integers: , the weight of each particle, and , the
speed of each particle (in meters/second).

Output
The output is a single real number indicating the total time (in seconds), with at least eight digits after the decimal
point.

input
100	5	10
40	25
50	20
50	20
70	10
12	50
9	70
49	30
38	25
27	50
19	70

! - .- /-

0 (
(

0

0 ≤ − 1231 (≤ − 1231

! ≤ 1000
! ≤ 0.- 1 ≤ ≤ − 1/- 231

output

75.00000000

D. Equivalent Spanning Trees
3 s., 1024 MB

You're given a list of weighted spanning trees on nodes numbered . A spanning tree in this list defines
a bottleneck cost between each pair of nodes and – it's the minimum cost edge on the path from to
in .

Two spanning trees and are equivalent if for all we have .

The goal of this problem is to determine the equivalences class of each of the spanning trees in the list.

Input
The first line contains two integers and with , , and .

Following this are lines. The first of them define the first spanning tree, and so on. Each line is of the
form , which defines an edge from node to node of cost . So , , and .

Output
The output is just one line with integers. The th number should be the minimum index , where the th spanning
tree in the input is equivalent to the th network in the input.

input
3	3
1	2	1
1	3	1
1	2	1
2	3	1
1	2	1
2	3	2

input

3	4
1	2	2
2	3	1
3	4	2
1	3	2
2	4	2
2	3	1
1	2	2
1	3	1
3	4	2

1 ! 1, 2, … , ! 2
(-, 3)BC2 - 3 - 3

2

4 2 1 ≤ - < 3 ≤ ! (-, 3) = (-, 3)BC4 BC2

1

1 ! 1 ≤ 1 2 ≤ ! ! ⋅ 1 ≤ /2106

1 ⋅ (! − 1) ! − 1
% &) % &) 1 ≤ %, & ≤ ! % ≠ & 1 ≤) ≤ 109

1 - 3 3
-

output

1	1	3	

output
1	2	1	

E. Simulate the Machine
4 s., 1024 MB

The machine has registers , each containing an 8-bit byte. A program is a sequence of operations. Each
operation is a pair , meaning that the machine does the assignment . (OR is the usual bitwise or
operation.)

So, a program is specified, along with the initial values of all the registers, and an integer . We're going to run the
program for steps. If the program comes to the end and there are more steps to go, it just starts over again. This
process continues until steps have been done.

The goal is to efficiently compute the final value of all the registers, even though the number of steps you might have to
simulate is insane.

Input
The first line contains three integers , , and , with and . is the length of the
program.

The next lines contain the program. Each of these lines contains and , the register numbers of the operation. (
).

The last line contains integers in the range 0 to 255, which specify the initial values of the registers.

Output
Print out the final register values (after steps of simulation) in the same format as the last line of of the input.

input
5	4	5
1	2
2	3
2	4
4	4
8	0	5	3	10

! , … ,+1 +!
(%, &) ← OR+% +% +&

5 /
/

/

! (/ 1 ≤ !, (≤ 218 1 ≤ / ≤ 1018 (

(% &
1 ≤ %, & ≤ !

!

/

output

15	7	5	3	10	

F. Not Quite Scrabble
2 s., 256 MB

It all starts with Scrabble trays with letters in them. The trays are numbered 1 through . The letters in the th tray are
represented by a string . You're going to (try) to build a goal word in your own Scrabble tray by raiding letters in the
other Scrabble trays.

But there are some rules and regulations. For each tray there is a limit on the number of letters that can be stolen
from it. Also, the letters have a cost associated with them. The letters in tray cost dollars to use.

Your goal is to compute the minimum total cost needed to build .

Input
The input begins with your goal string on a line by itself. The next line contains () the number of trays
you have to work from. Each of the next lines contain a string , followed by .

The strings are all non-empty, and consist of lower case Latin letters. The total length of all the strings does not exceed
100.

Output
Print the minimum cost of a solution, or -1 if there is no solution.

input
jjaze
3
jzj	2
aej	3
ja	10

input

wbwcwbw
4
wbw	2
bcc	1
cww	2
bbb	5

! ! -
6- 7

- 8-
- -

7

7 ! 1 ≤ ! ≤ 100
! 6- 8-

output

8

output
18

G. Simple Linkages
1 s., 256 MB

You're given a linkage system consisting of links. The system is restricted to operate in two dimensions. One end of
link 1 is pinned in a flexible manner to the point . The other end of link 1 is pinned to link 2, also in a flexible
manner. The construction continues up to the th link. Although the links are connected together, they do not
otherwise interfere with each other.

The goal is to get the far end of link as close as possible to some specified target point .

Input
The first line contains , the number of links in the linkage. Each of the following lines contain an integer , the
length of the th link. The final link contains two more integers, the target point .

The bounds on these inputs are: , , and the absolute values of the target coordinates do
not exceed .

Output
The output consists of lines, each containing two real numbers and , indicating the coordinates of the tip of the
th link. The length of each link, as derived from your numbers should not differ from the actual length by more than

. Also, your solution's distance to the target should not differ by more than from that of the correct solution.

input
3
5
3
4
5	3

input

2
4
2
-8	-3

!
(0, 0)

!

! (+, ,)

! ! (-
- (+, ,)

1 ≤ ! ≤ 20 1 ≤ ≤ 1000(-
2 × 104

! +- ,-
-
.01 .01

output
4.114	-2.842
6.297	-0.784
5.000	3.000

output
-3.745	-1.404
-5.618	-2.107

H. Roller Coaster
1 second, 256 megabytes

Yihan recently received the job to design and test roller coasters for amusement parks. The safety and security of roller
coasters are of great importance, so each design needs careful simulation to make sure everything is alright.

Hence, before a roller coaster is installed, it has to be run on a simulated track. A simulated track consists of rails
attached end-to-end with the beginning of the first rail fixed at elevation 0. Yihan can reconfigure the track at will by
adjusting the elevation change over a number of consecutive rails. The elevation change over other rails is not
affected. Each time rails are adjusted, the following track is raised or lowered as necessary to connect the track while
maintaining the start at elevation 0. The figure on the next page illustrates the track reconfigurations for the sample
input.

Each ride is initiated by launching the car with sufficient energy to reach height . That is, the car will continue to travel
as long as the elevation of the track does not exceed , and as long as the end of the track is not reached. Given the
record for all the day's rides and track configuration changes, compute for each ride the number of rails traversed by
the car before it stops.

Internally, the simulator represents the track as a sequence of elevation changes, one for each rail. The -th number
 represents the elevation change (in centimeters) over the -th rail. Suppose that after traversing rails, the car

has reached an elevation of centimetres. After traversing rails, the car will have reached an elevation of
centimeters. Initially the rails are horizontal; that is, for all . Rides and reconfigurations are interleaved
throughout the day. Each reconfiguration is specified by three numbers: , and . The segment to be adjusted
consists of rails a through (inclusive). The elevation change over each rail in the segment is set to . That is,
for all . Each ride is specified by one number —the maximum height that the car can reach.

Your task is to write a program that reads from the standard input a sequence of interleaved reconfigurations and
rides, and computes the number of rails traversed by the car for each ride.

Input
The first line of input contains one positive integer — the number of rails, . The following lines contain
reconfigurations interleaved with rides, followed by an end marker. Each line contains one of:

Reconfiguration — a single letter "I", and integers , and , all separated by single spaces (,
),

Ride — a single letter "Q", and an integer () separated by a single space,
A single letter "E"—the end marker, indicating the end of the input data.

You may assume that at any moment the elevation of any point in the track is in the interval centimeters. The
input contains no more than lines.

Output
The -th line of output should consist of one integer—the number of rails traversed by the car during the -th ride.

input
4
Q	1
I	1	4	2
Q	3
Q	1
I	2	2	-1
Q	3
E

Views of the track before and after each reconfiguration. The axis denotes the rail number. The axis and the
numbers over points denote elevation. The numbers over segments denote elevation changes.

!

ℎ
ℎ

! -
1- - - − 1

ℎ - ℎ + 1-
= 01- -

% & :
& : = :1-

% ≤ - ≤ & ℎ

! 1 ≤ ! ≤ 109

% & : 1 ≤ % ≤ & ≤ !
− ≤ : ≤109 109

ℎ 0 ≤ ℎ ≤ 109

[0,]109

105

- -

output
4
1
0
3

+ ,

