
Problem O — limit 1 second

Latin Squares

A Latin Square is an n-by-n array filled with n di↵erent digits, each digit occurring exactly once
in each row and once in each column. (The name “Latin Square” was inspired by the work of
Leonhard Euler, who used Latin characters in his papers on the topic.)

A Latin Square is said to be in reduced form if both its top row and leftmost column are in their
natural order. The natural order of a set of digits is by increasing value.

Your team is to write a program that will read an n-by-n array, and determine whether it is a Latin
Square, and if so, whether it is in reduced form.

Input

The first line of input contains a single integer n (2  n  36). Each of the next n lines contains
n digits in base n, with the normal digits ‘0’ through ‘9’ for digit values below 10 and uppercase
letters ‘A’ through ‘Z’ representing digit values 10 through 35. All digits will be legal for base n;
for instance, if n is 3, the only legal characters in the n input lines describing the square will be
‘0’, ‘1’, and ‘2’.

Output

If the given array is not a Latin Square, print “No” on a single line (without quotation marks).
If it is a Latin Square, but not in reduced form, print “Not Reduced” on a single line (without
quotation marks). If it is a Latin Square in reduced form, print “Reduced” on a single line (without
quotation marks).

2017 Pacific Northwest Region Programming Contest 7

15-295 Fall 2020 Problem Set 1

A.

Note: The input and output descriptions above are not complete. Some of the test cases
contain multiple sequential instances of the type described above. In this case the output
will be the answer to each of those test cases sequentially. For details see the extra example
on the next page.

Sample Input and Output

3

012

120

201

Reduced

4

3210

0123

2301

1032

Not Reduced

11

0123458372A

A9287346283

0285475A834

84738299A02

1947584037A

65848430002

038955873A8

947530200A8

93484721084

95539A92828

04553883568

No

2017 Pacific Northwest Region Programming Contest 8

4 Not Reduced
3210 No
0123
2301
1032
2
11
10

Problem U — limit 1 second

Unloaded Die

Consider a six-sided die, with sides labeled 1 through 6. We say the die is fair if each of its sides is
equally likely to be face up after a roll. We say the die is loaded if it isn’t fair. For example, if the
side marked 6 is twice as likely to come up as than any other side, we are dealing with a loaded
die.

For any die, define the expected result of rolling the die to be equal to the average of the values of the
sides, weighted by the probability of those sides coming up. For example, all six sides of a fair die are
equally likely to come up, and thus the expected result of rolling it is (1+2+3+4+5+6)/6 = 3.5.

You are given a loaded die, and you would like to unload it to make it more closely resemble a fair
die. To do so, you can erase the number on one of the sides, and replace it with a new number
which does not need to be an integer or even positive. You want to do so in such a way that

• The expected result of rolling the die is 3.5, just like a fair die.

• The di↵erence between the old label and the new label on the side you change is as small as
possible.

Input

The input consists of a single line containing six space-separated nonnegative real numbers v1 . . . v6,
where vi represents the probability that side i (currently labeled by the number i) is rolled.

It is guaranteed that the given numbers will sum to 1.

Output

Print, on a single line, the absolute value of the di↵erence between the new label and old label,
rounded and displayed to exactly three decimal places.

2017 Pacific Northwest Region Programming Contest 19

B.

Sample Input and Output

0.16666 0.16667 0.16667 0.16666 0.16667 0.16667 0.000

0.2 0.2 0.1 0.2 0.2 0.1 1.000

2017 Pacific Northwest Region Programming Contest 20

Problem Q — limit 1 second

Halfway

A friend of yours has written a program that compares every pair of a list of items. With n items,
it works as follows. First, it prints a 1, and it compares item 1 to items 2, 3, 4, . . . , n. It then prints
a 2, and compares item 2 to items 3, 4, 5, . . . , n. It continues like that until every pair of items has
been compared exactly once. If it compares item x to item y, it will not later compare item y to
item x. Also, it does not compare any item to itself.

Your friend wants to know when his program is halfway done. For a program that makes an odd
number of total comparisons, this is when it is doing the middle comparison. For a program that
makes an even number of total comparisons, this is when it is doing the first of the two middle
comparisons.

What will the last number printed be when the program is halfway done?

Note that since the earlier items have more comparisons than the later items, the answer is not
simply n/2.

Input

The input consists of a single line containing the integer n (2  n  109).

Output

Print, on a single line, the last number your friend’s program prints when it is halfway done.

Sample Input and Output

4 1

2017 Pacific Northwest Region Programming Contest 11

C.

7 2

10 3

1919 562

290976843 85225144

2017 Pacific Northwest Region Programming Contest 12

Problem S — limit 1 second

Purple Rain

Purple rain falls in the magic kingdom of Linearland which is a straight, thin peninsula.

On close observation however, Professor Nelson Rogers finds that the purple rain is actually a mix
of red and blue raindrops.

In his zeal, he records the location and color of the raindrops in di↵erent locations along the
peninsula. Looking at the data, Professor Rogers wants to know which part of Linearland had the
“least” purple rain.

After some thought, he decides to model this problem as follows. Divide the peninsula into n

sections and number them west to east from 1 to n. Then, describe the raindrops as a sequence of
R and B, depending on whether the rainfall in each section is primarily red or blue. Finally, find a
subsequence of contiguous sections where the di↵erence between the number of R and the number
of B is maximized.

Input

The input consists of a single line containing a string of n characters (1  n  105), describing the
color of the raindrops in sections 1 to n.

It is guaranteed that the string consists of uppercase ASCII letters ‘R’ and ‘B’ only.

Output

Print, on a single line, two space-separated integers that describe the starting and ending positions
of the part of Linearland that had the least purple rain. These two numbers should describe an
inclusive range; both numbers you print describe sections included in the range.

If there are multiple possible answers, print the one that has the westernmost starting section.
If there are multiple answers with the same westernmost starting section, print the one with the
westernmost ending section.

2017 Pacific Northwest Region Programming Contest 15

D.

Sample Input and Output

BBRRBRRBRB 3 7

BBRBBRRB 1 5

2017 Pacific Northwest Region Programming Contest 16

Problem C — limit 20 seconds

Crusher’s Code

Wesley Crusher is the teaching assistant for Introduction to Algorithms. During his first class,
the cadets were asked to come up with their own sorting algorithms. Monty came up with the
following code:

while (!sorted(a)) {

int i = random(n) ;

int j = random(n) ;

if (a[min(i,j)] > a[max(i,j)])

swap(a[i], a[j]) ;

}

Carlos, inspired, came up with the following code:

while (!sorted(a)) {

int i = random(n-1) ;

int j = i + 1 ;

if (a[i] > a[j])

swap(a[i], a[j]) ;

}

Wesley needs to determine which algorithm is better.

For a given input array of up to 8 values, calculate and print the expected number of iterations
for each algorithm. That is, on average, how many iterations should each algorithm take for the
given input?

Input

The first line contains T , the number of test cases: 2  T  100.

Each test case is given on a single line. The first value is N , the number of array elements;
2  N  8. This is followed on the same line by N integer array elements. The array elements will
have values between 0 and 100 inclusive. The array elements may not be distinct.

Output

For each test case, print out the expected number of iterations for Monty’s algorithm and for
Carlos’s algorithm, as shown in the sample output section. There should be exactly one space
between words and no spaces at the start of each line or at the end of each line. There should be
exactly six digits after the decimal point. Rounding should be to nearest representable value.

2013 Pacific Northwest Region Programming Contest 9

E.

Sample Input Sample Output

12

2 1 2

2 2 1

3 1 2 3

3 3 2 1

4 1 2 3 4

4 4 3 2 1

4 2 1 4 3

5 1 1 1 1 1

5 5 4 3 2 1

8 8 7 6 5 4 3 2 1

8 3 1 4 1 5 9 2 6

8 2 7 1 8 2 8 1 8

Monty 0.000000 Carlos 0.000000

Monty 2.000000 Carlos 1.000000

Monty 0.000000 Carlos 0.000000

Monty 6.000000 Carlos 5.000000

Monty 0.000000 Carlos 0.000000

Monty 14.666667 Carlos 12.500000

Monty 12.000000 Carlos 4.500000

Monty 0.000000 Carlos 0.000000

Monty 26.382275 Carlos 23.641975

Monty 89.576273 Carlos 79.496510

Monty 79.161905 Carlos 33.422840

Monty 63.815873 Carlos 38.910494

2013 Pacific Northwest Region Programming Contest 10

Problem B — limit 5 seconds

Bones’s Battery
Bones is investigating what electric shuttle is appropriate for his mom’s school district vehicle.

Each school has a charging station. It is important that a trip from one school to any other be
completed with no more than K rechargings. The car is initially at zero battery and must always
be recharged at the start of each trip; this counts as one of the K rechargings. There is at most
one road between each pair of schools, and there is at least one path of roads connecting each pair
of schools. Given the layout of these roads and K, compute the necessary range required of the
electric shuttle.

Input

Input begins with a line with one integer T (1  T  50) denoting the number of test cases. Each
test case begins with a line containing three integers N , K, and M (2  N  100, 1  K  100),
where N denotes the number of schools, K denotes the maximum number of rechargings permitted
per trip, and M denotes the number of roads. Next follow M lines each with three integers ui, vi,
and di (0  ui, vi < N , ui 6= vi, 1  di  109) indicating that road i connects schools ui and vi

(0-indexed) bidirectionally with distance di.

Output

For each test case, output one line containing the minimum range required.

Sample Input Sample Output

2

4 2 4

0 1 100

1 2 200

2 3 300

3 0 400

10 2 15

0 1 113

1 2 314

2 3 271

3 4 141

4 0 173

5 7 235

7 9 979

9 6 402

6 8 431

8 5 462

0 5 411

1 6 855

2 7 921

3 8 355

4 9 113

300

688

2013 Pacific Northwest Region Programming Contest 7

F.

