Shortest Paths and Dijkstra’s Algorithm

15-295 Competition Programming and Problem Solving
Dijkstra’s Algorithm

- Single-source shortest path (SSSP) problem: Given an edge-weighted graph and a source vertex s, find shortest paths to each other vertex from s

- Framework for SSSP:
 - Maintain “distance estimates” = the length of the shortest path found so far
 - Improve distance estimates by “relaxing” outgoing edges, i.e. if
 \[\text{dist}(v) > \text{dist}(u) + w(u, v) \]
 Then update \(\text{dist}(v) \).

- Bellman-Ford algorithm: Relax every edge n times. Complexity: \(O(nm) \)

- Dijkstra’s Algorithm:
 - If all edge weights are non-negative, each edge only needs to be relaxed once
 - Relax edges in order of the distance from u
 - Using an efficient priority queue, this can be done fast!
 - Complexity: \(O(m \log(n)) \)
Dijkstra’s Algorithm (In textbooks)

function DIJKSTRA(G = (V, E), s)
 dist[1..n] = ∞
 pred[1..n] = 0
 dist[s] = 0
 Q = priority_queue(V[1..n], key(v) = dist[v])
 while Q is not empty do
 u = Q.pop_min()
 for each edge e that is adjacent to u do
 // Priority queue keys must be updated if relax improves a distance estimate!
 RELAX(e)
 return dist[1..n], pred[1..n]

function RELAX(e = (u, v))
 if dist[v] > dist[u] + w(u, v) then
 dist[v] = dist[u] + w(u, v)
 pred[v] = u

Need an efficient algorithm to update the key (distance) of a vertex in the priority queue every time a distance estimate is improved.
Dijkstra’s Algorithm (In programming competitions)

- Instead of keeping a unique entry for every vertex in the priority queue, and updating the keys as the distances change, allow duplicate entries!
- Then ignore out-of-date entries whenever they are popped from the queue

```python
function DIJKSTRA(G = (V, E), s)
    dist[1..n] = \infty
    pred[1..n] = 0
    dist[s] = 0
    Q = priority_queue()
    Q.push(s, key = 0)
    while Q is not empty do
        u, key = Q.pop_min()
        if dist[u] = key then
            for each edge e that is adjacent to u do
                if dist[v] > dist[u] + w(u, v) then
                    dist[v] = dist[u] + w(u, v)
                    pred[v] = u
                    Q.push(v, key = dist[v])
        return dist[1..n], pred[1..n]
```