
Problem L: Sticky Situation 25

L Sticky Situation

Picture by Jeanette Irwin via Flickr

While on summer camp, you are playing a
game of hide-and-seek in the forest. You need
to designate a “safe zone”, where, if the players
manage to sneak there without being detected,
they beat the seeker. It is therefore of utmost
importance that this zone is well-chosen.

You point towards a tree as a suggestion, but
your fellow hide-and-seekers are not satisfied.
After all, the tree has branches stretching far
and wide, and it will be di�cult to determine
whether a player has reached the safe zone. They want a very specific demarcation for the
safe zone. So, you tell them to go and find some sticks, of which you will use three to mark a
non-degenerate triangle (i.e. with strictly positive area) next to the tree which will count as
the safe zone. After a while they return with a variety of sticks, but you are unsure whether
you can actually form a triangle with the available sticks.

Can you write a program that determines whether you can make a triangle with exactly three
of the collected sticks?

Input

The first line contains a single integer N , with 3 Æ N Æ 20 000, the number of sticks collected.
Then follows one line with N positive integers, each less than 260, the lengths of the sticks
which your fellow campers have collected.

Output

Output a single line containing a single word: possible if you can make a non-degenerate
triangle with three sticks of the provided lengths, and impossible if you can not.

Sample Input 1 Sample Output 1
3 possible

1 1 1

Sample Input 2 Sample Output 2
5 impossible

3 1 10 5 15

A

Problem C: Brexit 7

C Brexit

A long time ago in a galaxy far, far away, there was a large interstellar trading union, consisting
of many countries from all across the galaxy. Recently, one of the countries decided to leave
the union. As a result, other countries are thinking about leaving too, as their participation
in the union is no longer beneficial when their main trading partners are gone.

P
icture

by
N

A
SA

You are a concerned citizen of country X, and you want to find out whether your country will
remain in the union or not. You have crafted a list of all pairs of countries that are trading
partners of one another. If at least half of the trading partners of any given country Y leave
the union, country Y will soon follow. Given this information, you now intend to determine
whether your home country will leave the union.

Input

The input starts with one line containing four space separated integers C, P , X, and L. These
denote the total number of countries (2 Æ C Æ 200 000), the number of trading partnerships
(1 Æ P Æ 300 000), the number of your home country (1 Æ X Æ C) and finally the number
of the first country to leave, setting in motion a chain reaction with potentially disastrous
consequences (1 Æ L Æ C).

This is followed by P lines, each containing two space separated integers Ai and Bi satisfying
1 Æ Ai < Bi Æ C. Such a line denotes a trade partnership between countries Ai and Bi. No
pair of countries is listed more than once.

Initially, every country has at least one trading partner in the union.

Output

For each test case, output one line containing either “leave” or “stay”, denoting whether
you home country leaves or stays in the union.

B

8 Problem C: Brexit

Sample Input 1 Sample Output 1
4 3 4 1 stay

2 3

2 4

1 2

Sample Input 2 Sample Output 2
5 5 1 1 leave

3 4

1 2

2 3

1 3

2 5

Sample Input 3 Sample Output 3
4 5 3 1 stay

1 2

1 3

2 3

2 4

3 4

Sample Input 4 Sample Output 4
10 14 1 10 leave

1 2

1 3

1 4

2 5

3 5

4 5

5 6

5 7

5 8

5 9

6 10

7 10

8 10

9 10

Problem J: Programming Tutors 21

J Programming Tutors

Picture by Damien Pollet via Flickr

You are the founder of the Bruce Arden Programming
Collective, which is a tutoring programme that matches
experienced programmers with newbies to teach them.
You have N students and N tutors, but now you have
to match them up. Since the students will have to travel
to their tutors’ houses from their own (or vice versa) you
decide to do your matching based on travel distance.

Minimising overall distance doesn’t seem fair; it might happen that one student has to travel
a huge distance while all the other students get a tutor very close by, even though the tutors
could have been split up so that each gets a tutor that is at least somewhat close.

Thus, you opt to minimise the distance travelled by the student who is worst o�; one pairing
of students to tutors is better than another if the student who has to travel farthest in the
first pairing has to travel less far than the student who has to travel farthest in the second
pairing.

Because the students live in a city, the distance that a student needs to travel is not the
literal distance between them and their tutor. Instead, the distance between points (X, Y)
and (X Õ, Y Õ) in the city is

|X ≠ X Õ| + |Y ≠ Y Õ|.

Input

The first line of the input contains an integer N , with 1 Æ N Æ 100, the number of students
and the number of tutors to pair up.

Then, there are N lines, each with two space separated integers with absolute value at most
108, which give the locations of the N students.

These are followed by N lines, each with two space separated integers with absolute value at
most 108, which give the locations of the N tutors.

Note that it is possible for students and/or tutors to have identical locations (they may share
a house).

Output

Output a single line containing a single integer K, where K is the least integer such that there
exists a pairing of students to tutors so that no pair has distance greater than K between
them.

C

22 Problem J: Programming Tutors

Sample Input 1 Sample Output 1
2 2

0 0

0 3

0 2

0 5

Sample Input 2 Sample Output 2
4 2

0 1

0 2

0 3

0 4

1 0

1 1

1 2

1 3

Sample Input 3 Sample Output 3
3 5

0 5

5 2

4 5

3 3

5 2

5 2

Sample Input 4 Sample Output 4
2 10

0 0

0 5

-1 4

8 3

Problem G: Manhattan Positioning System 15

G Manhattan Positioning System

Figure 3: MPS is ideal for this city
c• OpenStreetMap contributors

The Manhattan Positioning System (MPS) is a mod-
ern variant of GPS, optimized for use in large cities.
MPS assumes all positions are discrete points on a reg-
ular two-dimensional grid. Within MPS, a position is
represented by a pair of integers (X,Y).

To determine its position, an MPS receiver first mea-
sures its distance to a number of beacons. Beacons have
known, fixed locations. MPS signals propagate only
along the X and Y axes through the streets of the city,
not diagonally through building blocks. When an MPS
receiver at (XR,YR) measures its distance to a beacon
at (XB,YB), it thus obtains the Manhattan distance:
|XR ≠ XB| + |YR ≠ YB|.

Given the positions of a number of beacons and the
Manhattan-distances between the receiver and each
beacon, determine the position of the receiver. Note
that the receiver must be at an integer grid position
(MPS does not yet support fractional coordinates).

Input

The first line contains an integer N , the number of beacons (1 Æ N Æ 1000). Then follow
N lines, each containing three integers, Xi, Yi, and Di, such that ≠106 Æ Xi, Yi Æ 106 and
0 Æ Di Æ 4·106. The pair (Xi, Yi) denotes the position of beacon i, while Di is the Manhattan
distance between receiver and beacon i.

No two beacons have the same position.

Output

If there is exactly one receiver position consistent with the input, write one line with two
integers, XR and YR, the position of the receiver.

If multiple receiver positions are consistent with the input, write one line with the word
“uncertain”.

If no receiver position is consistent with the input, write one line with the word “impossible”.

Sample Input 1 Sample Output 1
3 1000200 799

999999 0 1000

999900 950 451

987654 123 13222

D

16 Problem G: Manhattan Positioning System

Sample Input 2 Sample Output 2
2 uncertain

100 0 101

0 200 199

Sample Input 3 Sample Output 3
2 impossible

100 0 100

0 200 199

Sample Input 4 Sample Output 4
2 impossible

0 0 5

10 0 6

Problem K: Safe Racing 23

K Safe Racing

Picture by Martin Pettitt via Flickr

Tomorrow is racing day. There will be yet another grand
prix in yet another country. Beside the safety car, there
are various other security measures in order to make sure
that everybody is as safe as possible. Among these safety
measures are the track marshals: special race o�cials
standing along the track with an assortment of flags that
they can use to signal various messages to the drivers. For
instance, the yellow flag warns the drivers of a dangerous
situation, and the blue flag is used to order a lapped car
to make way for one of the faster cars.

Every marshal should be stationed in a so-called marshal booth, a kind of protected cage that
is clearly visible from the race track. These booths are located at regular intervals of ten
metres (one decametre) along the track. The track is circular and L decametres long and
therefore contains exactly L booths.

Not every booth needs to be used. International racing regulations require that the distance
between two consecutive marshals should be at most S decametres, meaning that every S

consecutive booths should contain at least one marshal. The marshals are not responsible for
waving the finish flag, so it is not required (but also not forbidden) to have a marshal at the
start/finish.

This leaves you with many ways of assigning marshals to the various booths along the track.
Out of sheer curiosity you decide to calculate the total number of valid marshal assignments.
Reduce your answer modulo 123 456 789 in case it gets too large.

Input

The input consists of two integers L, the length of the track, and S, the maximal distance
between consecutive marshals along the track, satisfying 1 Æ S Æ L Æ 106.

Output

Output the integer W , the number of ways to put marshals modulo 123 456 789. (Your answer
must satisfy 0 Æ W < 123 456 789.)

Sample Input 1 Sample Output 1
3 2 4

Sample Input 2 Sample Output 2
2500 2000 27511813

In the first sample test case, the four solutions are to put marshals at distances 0 and 1, at
distances 0 and 2, at distances 1 and 2, or, at distances 0, 1 and 2 (in decametres) from the
start.

E

Problem H: Multiplying Digits 17

H Multiplying Digits

Picture by Mees de Vries

For every positive integer we may obtain a non-negative
integer by multiplying its digits. This defines a function
f , e.g. f(38) = 24.

This function gets more interesting if we allow for other
bases. In base 3, the number 80 is written as 2222, so:
f3(80) = 16.

We want you to solve the reverse problem: given a base B and a number N , what is the
smallest positive integer X such that fB(X) = N?

Input

The input consists of a single line containing two integers B and N , satisfying 2 < B Æ 10000
and 0 < N < 263.

Output

Output the smallest positive integer solution X of the equation fB(X) = N . If no such X

exists, output the word “impossible”. The input is carefully chosen such that X < 263

holds (if X exists).

Sample Input 1 Sample Output 1
10 24 38

Sample Input 2 Sample Output 2
10 11 impossible

Sample Input 3 Sample Output 3
9 216 546

Sample Input 4 Sample Output 4
10000 5810859769934419200 5989840988999909996

F

