15-295 Fall 2018 #3 Shortest Paths

A. Two Buttons

2 seconds, 256 megabytes

Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a
display showing some positive integer. After clicking the red button, device multiplies the displayed number by
two. After clicking the blue button, device subtracts one from the number on the display. If at some point the
number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the
display shows number 7.

Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve
this result?

Input
The first and the only line of the input contains two distinct integers 7 and m (1 <n, m < 10%, separated by a
space .

Output
Print a single number — the minimum number of times one needs to push the button required to get the number

m out of number 7.

input

46

output

2

input

10 1

output

9

In the first example you need to push the blue button once, and then push the red button once.

In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.

B. Greg and Graph

8.0 s, 256 megabytes

Greg has a weighed directed graph, consisting of 7 vertices. In this graph any pair of distinct vertices has an edge
between them in both directions. Greg loves playing with the graph and now he has invented a new game:

e The game consists of 7 steps.

e On the i-th step Greg removes vertex number X; from the graph. As Greg removes a vertex, he also removes
all the edges that go in and out of this vertex.

e Before executing each step, Greg wants to know the sum of lengths of the shortest paths between all pairs of
the remaining vertices. The shortest path can go through any remaining vertex. In other words, if we assume
that d(i, v, u) is the shortest path between vertices v and u in the grell(ph that f)ormed before deleting vertex

alr,v,u

X;, then Greg wants to know the value of the following sum: ; ,;;e . .

Help Greg, print the value of the required sum before each step.

Input
The first line contains integer 7 (1 <71 <500) — the number of vertices in the graph.

Next 7 lines contain 1 integers each — the graph adjacency matrix: the j-th number in the i-th line ajj
(I<a;< 105, a;; = 0) represents the weight of the edge that goes from vertex i to vertex .

The next line contains 7 distinct integers: X1, X2, ..., X, (1 <x; <n) — the vertices that Greg deletes.

Output
Print 7 integers — the i-th number equals the required sum before the i-th step.

Please, do not use the $11d specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout
streams of the $I64d specifier.

input

input

AR NO® D
PR DO WwW
NR O DR
Wo R R

output

17 23 404 o

C. Fight Against Traffic

1 second, 256 megabytes

Little town Nsk consists of 7 junctions connected by m bidirectional roads. Each road connects two distinct
junctions and no two roads connect the same pair of junctions. It is possible to get from any junction to any other
junction by these roads. The distance between two junctions is equal to the minimum possible number of roads
on a path between them.

In order to improve the transportation system, the city council asks mayor to build one new road. The problem is
that the mayor has just bought a wonderful new car and he really enjoys a ride from his home, located near
junction s to work located near junction ¢. Thus, he wants to build a new road in such a way that the distance
between these two junctions won't decrease.

You are assigned a task to compute the number of pairs of junctions that are not connected by the road, such
that if the new road between these two junctions is built the distance between s and f won't decrease.

Input

The firt line of the input contains integers 17, m, s and t 2 <n <1000,] <m <1000, 1 <s,t<n,s #1) — the
number of junctions and the number of roads in Nsk, as well as the indices of junctions where mayors home and
work are located respectively. The i-th of the following 7 lines contains two integers u; and v; (1 <u;, v; <n,

u; # v;), meaning that this road connects junctions u; and Vv; directly. It is guaranteed that there is a path between
any two junctions and no two roads connect the same pair of junctions.

Output
Print one integer — the number of pairs of junctions not connected by a direct road, such that building a road
between these two junctions won't decrease the distance between junctions s and ¢.

input

D. Shortest Path

3 seconds, 256 megabytes

In Ancient Berland there were 7 cities and m two-way roads of equal length. The cities are numbered with
integers from 1 to 7 inclusively. According to an ancient superstition, if a traveller visits three cities a;, b;, ¢; in
row, without visiting other cities between them, a great disaster awaits him. Overall there are k such city triplets.
Each triplet is ordered, which means that, for example, you are allowed to visit the cities in the following order: a;,
¢;, b;. Vasya wants to get from the city 1 to the city 2 and not fulfil the superstition. Find out which minimal
number of roads he should take. Also you are required to find one of his possible path routes.

Input
The first line contains three integers 1, m, k (2 <n <3000, 1 <m <20000, 0 < k < 10°) which are the number
of cities, the number of roads and the number of the forbidden triplets correspondingly.

Then follow m lines each containing two integers x;, y; (1 <x;, y; < n) which are the road descriptions. The road is
described by the numbers of the cities it joins. No road joins a city with itself, there cannot be more than one road
between a pair of cities.

Then follow £ lines each containing three integers a;, b;, ¢; (1 < a;, b;, ¢; < n) which are the forbidden triplets.
Each ordered ftriplet is listed mo more than one time. All three cities in each triplet are distinct.

City 1 can be unreachable from city 1 by roads.

Output

If there are no path from 1 to 7 print - 1. Otherwise on the first line print the number of roads d along the shortest
path from the city 1 to the city 7. On the second line print d + 1 numbers — any of the possible shortest paths for
Vasya. The path should start in the city 1 and end in the city 7.

input

PR WNRD

E. Elevator
3 seconds, 256 megabytes
You work in a big office. It is a 9 floor building with an elevator that can accommodate up to 4 people. It is your
responsibility to manage this elevator.

Today you are late, so there are queues on some floors already. For each person you know the floor where he
currently is and the floor he wants to reach. Also, you know the order in which people came to the elevator.

According to the company's rules, if an employee comes to the elevator earlier than another one, he has to enter
the elevator earlier too (even if these employees stay on different floors). Note that the employees are allowed to
leave the elevator in arbitrary order.

The elevator has two commands:

e Go up or down one floor. The movement takes 1 second.

e Open the doors on the current floor. During this operation all the employees who have reached their
destination get out of the elevator. Then all the employees on the floor get in the elevator in the order they are
queued up while it doesn't contradict the company's rules and there is enough space in the elevator. Each
employee spends 1 second to get inside and outside the elevator.

Initially the elevator is empty and is located on the floor 1.

You are interested what is the minimum possible time you need to spend to deliver all the employees to their
destination. It is not necessary to return the elevator to the floor 1.

Input
The first line contains an integer 71 (1 <n <2000) — the number of employees.

The i-th of the next 7 lines contains two integers a; and b; (1 <a;, b; <9, a; # b;) — the floor on which an
employee initially is, and the floor he wants to reach.

The employees are given in the order they came to the elevator.

Output
Print a single integer — the minimal possible time in seconds.

input

2
35
53

output

10

input

w Ul N
Ul w

output

12

See on-line problem description for explanation
of first example.

F. Dynamic Shortest Path
10 seconds, 512 megabytes

You are given a weighted directed graph, consisting of 71 vertices and m edges. You should answer ¢ queries of
two types:

e 1 v — find the length of shortest path from vertex 1 to vertex v.

e 2 ¢ l1 ... 1. — add 1 to weights of edges with indices /1, [, ..., /.

Input
The first line of input data contains integers 1, m, g (1 <n,m < 10°,1< q <2000) — the number of vertices
and edges in the graph, and the number of requests correspondingly.

Next m lines of input data contain the descriptions of edges: i-th of them contains description of edge with index
i — three integers a;, b;, ¢; (1 <a;, b;<n, 0 <c; < 10°% — the beginning and the end of edge, and its initial
weight correspondingly.

Next ¢ lines of input data contain the description of edges in the format described above (1 <v<n, 1 < lj <m).
It's guaranteed that inside single query all lj are distinct. Also, it's guaranteed that a total number of edges in all
requests of the second type does not exceed 10°.

Output
For each query of first type print the length of the shortest path from 1 to v in a separate line. Print -1, if such
path does not exists.

input

9
0
0
? See on-line problem description for

explanations of these inputs and outputs.

RPRNRPRRPNRPRREPNMNNRW
NWNNWRNWRWNN
[

output

NBRRNO®R

[
>
o
<
+

[NV}

PR ANDPRPRPPPUONDPAPWLDS
N

PNRPNRNNRRRPRWNNU

output

BwWwN R

