
Problem D
Daydreaming Stockbroker

Problem ID: stockbroker
Time limit: 1 second

Photo by liz west on flickr, cc by

Gina Reed, the famous stockbroker, is having a slow
day at work, and between rounds of solitaire she is day-
dreaming. Foretelling the future is hard, but imagine if
you could just go back in time and use your knowledge
of stock price history in order to maximize your profits!

Now Gina starts to wonder: if she were to go back in
time a few days and bring a measly $100 with her, how
much money could she make by just buying and selling
stock in Rollercoaster Inc. (the most volatile stock in
existence) at the right times? Would she earn enough
to retire comfortably in a mansion on Tenerife?

Note that Gina can not buy fractional shares, she must buy whole shares in Rollercoaster
Inc. The total number of shares in Rollercoaster Inc. is 100 000, so Gina can not own more than
100 000 shares at any time. In Gina’s daydream, the world is nice and simple: there are no fees
for buying and selling stocks, stock prices change only once per day, and her trading does not
influence the valuation of the stock.

Input
The first line of input contains an integer d (1  d  365), the number of days that Gina goes
back in time in her daydream. Then follow d lines, the i’th of which contains an integer pi
(1  pi  500) giving the price at which Gina can buy or sell stock in Rollercoaster Inc. on day
i. Days are ordered from oldest to newest.

Output
Output the maximum possible amount of money Gina can have on the last day. Note that the
answer may exceed 2

32.

Sample Input 1 Sample Output 1

6

100

200

100

150

125

300

650

NCPC 2016 Problem D: Daydreaming Stockbroker 7

A

B. Bacteria Experiment
time limit per test: 1.5 s

memory limit per test: 256 MB
input: standard input

output: standard output

A year after his bacteria experiment, Jason decided to perform another experiment on a new bacteria specie which evolves in a special way. The
initial form of the bacteria can be considered as an undirected tree with N nodes in terms of graph theory. Every hour, an edge (x, y) is built if there
exists a node z such that, in the previous hour, there exists edge (x, z) and edge (y, z), but not edge (x, y). The bacteria keep evolving until no more
edges can be formed.

The following graph shows a type of bacteria which requires 2 hours to fully evolve:

As it may take months if not years for the bacteria to evolve to its ultimate form, it is impossible for Jason to stay at the laboratory to observe the
change of the bacteria throughout the entire process. Therefore, he wants you to calculate the time required for the bacteria to fully evolve, so that he
can just get back to the laboratory on time.

Input
The first line contains an integer N. (2 ≤ N ≤ 5 × 10)

The next N - 1 line each contains two integers u and v, which means there exists an edge between node u and v. (1 ≤ u, v ≤ N)

The given graph is guaranteed to be a valid tree.

Output
Output an integer, the time (in hours) required for the bacteria to fully evolve.

Example
input

6
1	5
5	3
5	6
6	2
6	4

5

output

2

Problems - Codeforces http://codeforces.com/gym/101522/problems

2 of 19 10/25/17, 5:51 PM

Problem E
Emptying the Baltic

Problem ID: emptyingbaltic
Time limit: 3 seconds

Picture by Jeremy Halls on Flickr, cc by-sa

Gunnar dislikes forces of nature and always comes up
with innovative plans to decrease their influence over
him. Even though his previous plan of a giant dome
over Stockholm to protect from too much sunlight (as
well as rain and snow) has not yet been realized, he is
now focusing on preempting the possible effects climate
change might have on the Baltic Sea, by the elegant so-
lution of simply removing the Baltic from the equation.

First, Gunnar wants to build a floodbank connecting
Denmark and Norway to separate the Baltic from the
Atlantic Ocean. The floodbank will also help protect
Nordic countries from rising sea levels in the ocean. Next, Gunnar installs a device that can
drain the Baltic from the seafloor. The device will drain as much water as needed to the Earth’s
core where it will disappear forever (because that is how physics works, at least as far as Gunnar
is concerned). However, depending on the placement of the device, the entire Baltic might not
be completely drained – some pockets of water may remain.

To simplify the problem, Gunnar is approximating the map of the Baltic using a 2-dimensional
grid with 1 meter squares. For each square on the grid, he computes the average altitude. Squares
with negative altitude are covered by water, squares with non-negative altitude are dry. Altitude
is given in meters above the sea level, so the sea level has altitude of exactly 0. He disregards
lakes and dry land below the sea level, as these would not change the estimate much anyway.

Water from a square on the grid can flow to any of its 8 neighbours, even if the two squares
only share a corner. The map is surrounded by dry land, so water never flows outside of the map.
Water respects gravity, so it can only flow closer to the Earth’s core – either via the drainage
device or to a neighbouring square with a lower water level.

Gunnar is more of an idea person than a programmer, so he has asked for your help to
evaluate how much water would be drained for a given placement of the device.

Input
The first line contains two integers h and w, 1  h, w  500, denoting the height and width of
the map.

Then follow h lines, each containing w integers. The first line represents the northernmost
row of Gunnar’s map. Each integer represents the altitude of a square on the map grid. The
altitude is given in meters and it is at least �106 and at most 106.

The last line contains two integers i and j, 1  i  h, 1  j  w, indicating that the
draining device is placed in the cell corresponding to the j’th column of the i’th row. You may
assume that position (i, j) has negative altitude (i.e., the draining device is not placed on land).

Output
Output one line with one integer – the total volume of sea water drained, in cubic meters.

NCPC 2017 Problem E: Emptying the Baltic 9

C

Sample Input 1 Sample Output 1

3 3
-5 2 -5
-1 -2 -1
5 4 -5
2 2

10

Sample Input 2 Sample Output 2

2 3
-2 -3 -4
-3 -2 -3
2 1

16

NCPC 2017 Problem E: Emptying the Baltic 10

Problem​ ​H​ ​(or​ ​whatever​ ​letter​ ​it​ ​should ​ ​be):​ ​Wish ​ ​Jason ​ ​Li ​ ​a ​ ​happy​ ​birthday!

Happy	Birthday	Jason	Li!	

Problem F
Fleecing the Raffle

Problem ID: raffle
Time limit: 2 seconds

The Raffle (Raffling for the Goose) by William Sidney Mount, public domain

A tremendously exciting raffle is being held,
with some tremendously exciting prizes being
given out. All you have to do to have a chance
of being a winner is to put a piece of paper with
your name on it in the raffle box. The lucky
winners of the p prizes are decided by drawing
p names from the box. When a piece of paper
with a name has been drawn it is not put back
into the box – each person can win at most one
prize.

Naturally, it is against the raffle rules to put
your name in the box more than once. However,
it is only cheating if you are actually caught,
and since not even the raffle organizers want to spend time checking all the names in the box,
the only way you can get caught is if your name ends up being drawn for more than one of the
prizes. This means that cheating and placing your name more than once can sometimes increase
your chances of winning a prize.

You know the number of names in the raffle box placed by other people, and the number of
prizes that will be given out. By carefully choosing how many times to add your own name to
the box, how large can you make your chances of winning a prize (i.e., the probability that your
name is drawn exactly once)?

Input
The input consists of a single line containing two integers n and p (2  p  n  10

6), where n

is the number of names in the raffle box excluding yours, and p is the number of prizes that will
be given away.

Output
Output a single line containing the maximum possible probability of winning a prize, accurate
up to an absolute error of 10�6.

Sample Input 1 Sample Output 1

3 2 0.6

Sample Input 2 Sample Output 2

23 5 0.45049857550

NCPC 2016 Problem F: Fleecing the Raffle 11

D

Problem C
Compass Card Sales
Problem ID: compasscard

Time limit: 6 seconds

Picture via Wikimedia Commons, public domain

Katla has recently stopped playing the collectible card
game Compass. As you might remember, Compass
is a game where each card has a red, a green and a
blue angle, each one between 0 and 359, as well as an
ID. Since she has stopped playing, Katla has decided
to sell all her cards. However, she wants to keep her
deck as unique as possible while selling off the cards.
Can you help her figure out the order in which she
should sell the cards?

To decide how unique a card is in the deck, she
proceeds as follows. For each of the three colors she
finds the closest other card in both directions, and then
computes the angle between these two other cards.
For instance if she has three cards with red angles 42,
90 and 110, then the uniqueness values of their red
angles are 340, 68, and 312, respectively. If two cards A and B have the same angle, B is
considered the closest to A in both directions so that the uniqueness value of A (and B) for that
color is 0.

By summing the uniqueness values over the three colours, Katla finds how unique each card
is. When selling a card, Katla sells the currently least unique card (smallest uniqueness value).
If two cards have the same uniqueness value, she will sell the one with the higher ID first. After
each card is sold, the uniqueness values of the remaining cards are updated before selling the
next card.

Input
The first line of input contains an integer n, the number of cards (1  n  105). Then follows
n lines. Each of these n lines contains 4 integers r, g, b, id (0  r, g, b < 360, 0  id < 231),
giving the red, green and blue angles as well as the ID of a card. No two cards have the same ID.

Output
Output n lines, containing the IDs of the cards in the order they are to be sold, from first (least
unique) to last (most unique).

Sample Input 1 Sample Output 1

3
42 1 1 1
90 1 1 2
110 1 1 3

2
3
1

NCPC 2017 Problem C: Compass Card Sales 5

Sample Input 2 Sample Output 2

4
0 0 0 0
120 120 120 120
240 240 240 240
0 120 240 2017

2017
240
120
0

NCPC 2017 Problem C: Compass Card Sales 6

E

Problem H
Highest Tower
Problem ID: tower

Time limit: 7 seconds

Photo by Matt Schilder on flickr, cc by-sa

Oni loved to build tall towers of blocks. Her parents
were not as amused though. They were on the verge
of going crazy over that annoying loud noise when-
ever a tower fell to the ground, not to mention having
to pick up blocks from the floor all the time. Oni’s
mother one day had an idea. Instead of building
the tower out of physical blocks, why couldn’t Oni
construct a picture of a tower using two-dimensional
rectangles that she montaged on a board on the wall?
Oni’s mother cut out rectangles of various sizes and
colors, drew a horizontal line representing the ground
at the bottom of the board, and explained the rules
of the game to Oni: every rectangle must be placed immediately above another rectangle or the
ground line. For every rectangle you can choose which of its two orientations to use. I.e., if a
rectangle has sides of length s and t, you can either have a side of length s horizontally or a side
of length t horizontally. You may place exactly one rectangle immediately above another one if
its horizontal side is strictly smaller than the horizontal side of the rectangle beneath. Exactly
one rectangle must be placed on the ground line. Now try to build as tall a tower as possible!

Oni’s mother took extra care to make sure that it was indeed possible to use all rectangles
in a tower in order not to discourage Oni. But of course Oni quickly lost interest anyway and
returned to her physical blocks. After all, what is the point of building a tower if you cannot feel
the suspense before the inevitable collapse? Her father on the other hand got interested by his
wife’s puzzle as he realized this is not a kids’ game.

Input
The first line of input contains an integer n (1  n  250 000), the number of rectangles. Then
follow n lines, each containing two integers s and t (1  s  t  10

9 nm), the dimensions of a
rectangle.

You may safely assume that there is a way to build a tower using all n rectangles.

Output
Output a single line containing the height in nm of the tallest possible tower using all the
rectangles while having the horizontal side lengths strictly decreasing from bottom to top.

Sample Input 1 Sample Output 1

3

50000 160000

50000 100000

50000 100000

200000

NCPC 2016 Problem H: Highest Tower 15

F

Problem E
Exponial

Problem ID: exponial
Time limit: 1 second

Illustration of exponial(3) (not to scale), Picture by
C.M. de Talleyrand-Périgord via Wikimedia Commons

Everybody loves big numbers (if you do not, you might want to
stop reading at this point). There are many ways of constructing
really big numbers known to humankind, for instance:

• Exponentiation: 422016 = 42 · 42 · . . . · 42| {z }
2016 times

.

• Factorials: 2016! = 2016 · 2015 · . . . · 2 · 1.

In this problem we look at their lesser-known love-child the
exponial, which is an operation defined for all positive integers
n as

exponial(n) = n

(n�1)(n�2)

···2
1

.

For example, exponial(1) = 1 and exponial(5) = 5

43
2

1

⇡ 6.206 · 10183230 which is already
pretty big. Note that exponentiation is right-associative: abc = a

(bc).
Since the exponials are really big, they can be a bit unwieldy to work with. Therefore

we would like you to write a program which computes exponial(n) mod m (the remainder of
exponial(n) when dividing by m).

Input
The input consists of two integers n (1  n  10

9) and m (1  m  10

9).

Output
Output a single integer, the value of exponial(n) mod m.

Sample Input 1 Sample Output 1

2 42 2

Sample Input 2 Sample Output 2

5 123456789 16317634

Sample Input 3 Sample Output 3

94 265 39

NCPC 2016 Problem E: Exponial 9

G

