
Problem B
Best Relay Team

Problem ID: bestrelayteam
Time limit: 1 second

Picture by Fernando Frazão/Agência Brasil, cc by

You are the coach of the national athletics team and need
to select which sprinters should represent your country
in the 4⇥ 100 m relay in the upcoming championships.

As the name of the event implies, such a sprint relay
consist of 4 legs, 100 meters each. One would think that
the best team would simply consist of the 4 fastest 100
m runners in the nation, but there is an important detail
to take into account: flying start. In the 2nd, 3rd and
4th leg, the runner is already running when the baton is
handed over. This means that some runners – those that
have a slow acceleration phase – can perform relatively better in a relay if they are on the 2nd,
3rd or 4th leg.

You have a pool of runners to choose from. Given how fast each runner in the pool is, decide
which four runners should represent your national team and which leg they should run. You are
given two times for each runner – the time the runner would run the 1st leg, and the time the
runner would run any of the other legs. A runner in a team can only run one leg.

Input
The first line of input contains an integer n, the number of runners to choose from (4 n 500).
Then follow n lines describing the runners. The i’th of these lines contains the name of the i’th
runner, the time ai for the runner to run the 1st leg, and the time bi for the runner to run any of
the other legs (8 bi ai < 20). The names consist of between 2 and 20 (inclusive) uppercase
letters ‘A’-‘Z’, and no two runners have the same name. The times are given in seconds with
exactly two digits after the decimal point.

Output
First, output a line containing the time of the best team. The precise formatting of the time is
not important. Then output four lines containing the names of the runners in that team. The
first of these lines should contain the runner you have picked for the 1st leg, the second line the
runner you have picked for the 2nd leg, and so on. Any solution that results in the fastest team is
acceptable.

Sample Input 1 Sample Output 1

6
ASHMEADE 9.90 8.85
BLAKE 9.69 8.72
BOLT 9.58 8.43
CARTER 9.78 8.93
FRATER 9.88 8.92
POWELL 9.72 8.61

35.54
CARTER
BOLT
POWELL
BLAKE

NCPC 2017 Problem B: Best Relay Team 3

A

Problem G
Galactic Collegiate Programming Contest

Problem ID: gcpc
Time limit: 6 seconds

Picture by GuillaumePreat on Pixabay, cc0

One hundred years from now, in 2117, the In-
ternational Collegiate Programming Contest
(of which the NCPC is a part) has expanded
significantly and it is now the Galactic Colle-
giate Programming Contest (GCPC).

This year there are n teams in the contest.
The teams are numbered 1, 2, . . . , n, and your
favorite team has number 1.

Like today, the score of a team is a pair of
integers (a, b) where a is the number of solved
problems and b is the total penalty of that team.
When a team solves a problem there is some associated penalty (not necessarily calculated in
the same way as in the NCPC – the precise details are not important in this problem). The total
penalty of a team is the sum of the penalties for the solved problems of the team.

Consider two teams t1 and t2 whose scores are (a1, b1) and (a2, b2). The score of team t1 is
better than that of t2 if either a1 > a2, or if a1 = a2 and b1 < b2. The rank of a team is k + 1
where k is the number of teams whose score is better.

You would like to follow the performance of your favorite team. Unfortunately, the organizers
of GCPC do not provide a scoreboard. Instead, they send a message immediately whenever a
team solves a problem.

Input
The first line of input contains two integers n and m, where 1 n 105 is the number of teams,
and 1 m 105 is the number of events.

Then follow m lines that describe the events. Each line contains two integers t and p

(1 t n and 1 p 1000), meaning that team t has solved a problem with penalty p. The
events are ordered by the time when they happen.

Output
Output m lines. On the i’th line, output the rank of your favorite team after the first i events
have happened.

Sample Input 1 Sample Output 1

3 4
2 7
3 5
1 6
1 9

2
3
2
1

NCPC 2017 Problem G: Galactic Collegiate Programming Contest 13

B

Problem D
Distinctive Character

Problem ID: distinctivecharacter
Time limit: 4 seconds

Picture by Fairytalemaker on Pixabay

Tira would like to join a multiplayer game with
n other players. Each player has a character with
some features. There are a total of k features, and
each character has some subset of them.

The similarity between two characters A and
B is calculated as follows: for each feature f , if
both A and B have feature f or if none of them
have feature f , the similarity increases by one.

Tira does not have a character yet. She would
like to create a new, very original character so that
the maximum similarity between Tira’s character
and any other character is as low as possible.

Given the characters of the other players, your task is to create a character for Tira that fulfils
the above requirement. If there are many possible characters, you can choose any of them.

Input
The first line of input contains two integers n and k, where 1 n 105 is the number of players
(excluding Tira) and 1 k 20 is the number of features.

Then follow n lines describing the existing characters. Each of these n lines contains a string
of k digits which are either 0 or 1. A 1 in position j means the character has the j’th feature,
and a 0 means that it does not have the j’th feature.

Output
Output a single line describing the features of Tira’s character in the same format as in the input.
If there are multiple possible characters with the same smallest maximum similarity, any one of
them will be accepted.

Sample Input 1 Sample Output 1

3 5
01001
11100
10111

00010

Sample Input 2 Sample Output 2

1 4
0000

1111

NCPC 2017 Problem D: Distinctive Character 7

C

Problem I
Import Spaghetti

Problem ID: importspaghetti
Time limit: 4 seconds

cc-by NCPC 2017

You just graduated from programming school and nailed
a Python programming job. The first day at work you
realize that you have inherited a mess. The spaghetti
design pattern was chosen by the previous maintainer,
who recently fled the country. You try to make sense of
the code, but immediately discover that different files
depend cyclically on each other. Testing the code, in
fact running the code, has not yet been attempted.

As you sit down and think, you decide that the first
thing to do is to eliminate the cycles in the dependency graph. So you start by finding a shortest
dependency cycle.

Input
The first line of input contains a number n, 1 n 500, the number of files. Then follows one
line with n names of files. Each name is a string with at least 1 and at most 8 lower case letters
‘a’ to ‘z’. Then follow n sections, one section per file name, in the order they were given on the
second line. Each section starts with one line containing the name of the file and an integer k,
followed by k lines, each starting with “import”.

Each “import” line is a comma-space separated line of dependencies. No file imports
the same file more than once, and every file imported is listed in the second line of the input.
Comma-space separated means that every line will start with “import”, then have a list of
class names separated by “, ” (see sample inputs for examples).

Output
If the code base has no cyclic dependencies, output “SHIP IT”. Otherwise, output a line
containing the names of files in a shortest cycle, in the order of the cycle. If there are many
shortest cycles, any one will be accepted.

Sample Input 1 Sample Output 1

4
a b c d
a 1
import d, b, c
b 2
import d
import c
c 1
import c
d 0

c

NCPC 2017 Problem I: Import Spaghetti 17

D

Sample Input 2 Sample Output 2

5
classa classb myfilec execd libe
classa 2
import classb
import myfilec, libe
classb 1
import execd
myfilec 1
import libe
execd 1
import libe
libe 0

SHIP IT

Sample Input 3 Sample Output 3

5
classa classb myfilec execd libe
classa 2
import classb
import myfilec, libe
classb 1
import execd
myfilec 1
import libe
execd 1
import libe, classa
libe 0

classa classb execd

NCPC 2017 Problem I: Import Spaghetti 18

Problem K
Kayaking Trip

Problem ID: kayaking
Time limit: 2 seconds

Solution to Sample Input 1, with kayaks replaced by canoes (cc by-sa NCPC 2017)

You are leading a kayaking trip with a mixed group
of participants in the Stockholm archipelago, but as
you are about to begin your final stretch back to the
mainland you notice a storm on the horizon. You
had better paddle as fast as you can to make sure
you do not get trapped on one of the islands. Of
course, you cannot leave anyone behind, so your
speed will be determined by the slowest kayak.
Time to start thinking; How should you distribute
the participants among the kayaks to maximize
your chance of reaching the mainland safely?

The kayaks are of different types and have dif-
ferent amounts of packing, so some are more easily
paddled than others. This is captured by a speed factor c that you have already figured out for
each kayak. The final speed v of a kayak, however, is also determined by the strengths s1 and s2

of the two people in the kayak, by the relation v = c(s1 + s2). In your group you have some
beginners with a kayaking strength of sb, a number of normal participants with strength sn and
some quite experienced strong kayakers with strength se.

Input
The first line of input contains three non-negative integers b, n, and e, denoting the number of
beginners, normal participants, and experienced kayakers, respectively. The total number of
participants, b+ n+ e, will be even, at least 2, and no more than 100 000. This is followed by
a line with three integers sb, sn, and se, giving the strengths of the corresponding participants
(1 sb < sn < se 1 000). The third and final line contains m = b+n+e

2 integers c1, . . . , cm
(1 ci 100 000 for each i), each giving the speed factor of one kayak.

Output
Output a single integer, the maximum speed that the slowest kayak can get by distributing the
participants two in each kayak.

Sample Input 1 Sample Output 1

3 1 0
40 60 90
18 20

1600

Sample Input 2 Sample Output 2

7 0 7
5 10 500
1 1 1 1 1 1 1

505

NCPC 2017 Problem K: Kayaking Trip 21

E

Problem C
Compass Card Sales
Problem ID: compasscard

Time limit: 6 seconds

Picture via Wikimedia Commons, public domain

Katla has recently stopped playing the collectible card
game Compass. As you might remember, Compass
is a game where each card has a red, a green and a
blue angle, each one between 0 and 359, as well as an
ID. Since she has stopped playing, Katla has decided
to sell all her cards. However, she wants to keep her
deck as unique as possible while selling off the cards.
Can you help her figure out the order in which she
should sell the cards?

To decide how unique a card is in the deck, she
proceeds as follows. For each of the three colors she
finds the closest other card in both directions, and then
computes the angle between these two other cards.
For instance if she has three cards with red angles 42,
90 and 110, then the uniqueness values of their red
angles are 340, 68, and 312, respectively. If two cards A and B have the same angle, B is
considered the closest to A in both directions so that the uniqueness value of A (and B) for that
color is 0.

By summing the uniqueness values over the three colours, Katla finds how unique each card
is. When selling a card, Katla sells the currently least unique card (smallest uniqueness value).
If two cards have the same uniqueness value, she will sell the one with the higher ID first. After
each card is sold, the uniqueness values of the remaining cards are updated before selling the
next card.

Input
The first line of input contains an integer n, the number of cards (1 n 105). Then follows
n lines. Each of these n lines contains 4 integers r, g, b, id (0 r, g, b < 360, 0 id < 231),
giving the red, green and blue angles as well as the ID of a card. No two cards have the same ID.

Output
Output n lines, containing the IDs of the cards in the order they are to be sold, from first (least
unique) to last (most unique).

Sample Input 1 Sample Output 1

3
42 1 1 1
90 1 1 2
110 1 1 3

2
3
1

NCPC 2017 Problem C: Compass Card Sales 5

Sample Input 2 Sample Output 2

4
0 0 0 0
120 120 120 120
240 240 240 240
0 120 240 2017

2017
240
120
0

NCPC 2017 Problem C: Compass Card Sales 6

F

Problem H
Hubtown

Problem ID: hubtown
Time limit: 10 seconds

Hubtown is a large Nordic city which is home to n citizens. Every morning, each of its citizens
wants to travel to the central hub from which the city gets its name, by using one of the m

commuter trains which pass through the city. Each train line is a ray (i.e., a line segment which
extends infinitely long in one direction), ending at the central hub, which is located at coordinates
(0, 0). However, the train lines have limited capacity (which may vary between train lines), so
some train lines may become full, leading to citizens taking their cars instead of commuting.
The city council wishes to minimize the number of people who go by car. In order to do this,
they will issue instructions stating which citizens are allowed to take which train.

A citizen will always take the train line which is of least angular distance from its house.
However, if a citizen is exactly in the middle between two train lines, they are willing to take
either of them, and city council can decide which of the two train lines the citizen should use.
See Figure H.1 for an example.

Citizen

Central hub

Train line

Figure H.1: Illustration of Sample Input 1. The dashed arrows indicate which train lines the
citizens are closest to (note that we are measuring angular distances, not Euclidean distance).

Your task is to help the council, by finding a maximum size subset of citizens who can go by
train in the morning to the central hub, ensuring that each of the citizens take one of the lines
they are closest to, while not exceeding the capacity of any train line. For this subset, you should
also print what train they are to take.

Input
The first line of input contains two integers n and m, where 0 n 200 000 is the number of
citizens, and 1 m 200 000 is the number of train lines.

The next n lines each contain two integers x and y, the Cartesian coordinates of a citizen’s
home. No citizen lives at the central hub of the city.

Then follow m lines, each containing three integers x, y, and c describing a train line, where
(x, y) are the coordinates of a single point (distinct from the central hub of the city) which the
train line passes through and 0 c n is the capacity of the train line. The train line is the ray
starting at (0, 0) and passing through (x, y).

All coordinates x and y (both citizens’ homes and the points defining the train lines) are
bounded by 1000 in absolute value. No two train lines overlap, but multiple citizens may live at
the same coordinates.

NCPC 2017 Problem H: Hubtown 15

G

Output
First, output a single integer s – the maximum number of citizens who can go by train. Then,
output s lines, one for each citizen that goes by train. On each line, output the index of the citizen
followed by the index of the train line the citizen takes. The indices should be zero-indexed (i.e.,
between 0 and n� 1 for citizens, and between 0 and m� 1 for train lines, respectively), using
the same order as they were given in the input.

Sample Input 1 Sample Output 1

3 2
2 0
-1 0
-2 -1
1 -1 1
1 1 2

3
0 1
1 1
2 0

Sample Input 2 Sample Output 2

6 3
1 1
1 1
1 1
-1 1
-1 1
0 1
-1 0 2
0 1 2
1 0 2

6
0 2
1 2
2 1
5 1
3 0
4 0

NCPC 2017 Problem H: Hubtown 16

