
ACM International Collegiate Programming Contest
2011 East Central Regional Contest

Grand Valley State University
University of Cincinnati
University of Windsor

Youngstown State University
October 22, 2011

Sponsored by IBM

Rules:

1. There are nine problems to be completed in five hours.

2. All questions require you to read the test data from standard input and write results to standard
output. You cannot use files for input or output. Additional input and output specifications can
be found in the General Information Sheet.

3. No whitespace should appear in the output except between printed fields .

4. All whitespace, either in input or output, will consist of exactly one blank character.

5. The allowed programming languages are C, C++ and Java.

6. All programs will be re-compiled prior to testing with the judges’ data.

7. Non-standard libraries cannot be used in your solutions. The Standard Template Library (STL)
and C++ string libraries are allowed. The standard Java API is available, except for those
packages that are deemed dangerous by contestant officials (e.g., that might generate a security
violation).

8. The input to all problems will consist of multiple test cases.

9. Programming style is not considered in this contest. You are free to code in whatever style you
prefer. Documentation is not required.

10. All communication with the judges will be handled by the PC2 environment.

11. Judges’ decisions are to be considered final. No cheating will be tolerated.



2011 East Central Regional Contest 1

Problem A: The Agency

Following in the footsteps of a number of flight searching startups you want to create the first inter-
planetary travel website. Your first problem is to quickly find the cheapest way to travel between two
planets. You have an advantage over your competitors because you have realized that all the planets
and the flights between them have a special structure. Each planet is represented by a string of N bits
and there is a flight between two planets if their N -bit strings differ in exactly one position.

The cost of a flight is the cost of landing on the destination planet. If the ith character in a planet’s
string is a 1 then the ith tax must be paid to land. The cost of landing on a planet is the sum of the
applicable taxes.

Given the starting planet, ending planet, and cost of the ith tax compute the cheapest set of flights to
get from the starting planet to the ending planet.

Input

Input for each test case will consist of two lines. The first line will have N (1 ≤ N ≤ 1,000), the number
of bits representing a planet; S, a string of N zeroes and ones representing the starting planet; and E,
a string representing the ending planet in the same format. The second line will contain N integers the
ith of which is the cost of the ith tax. All costs will be between 1 and 1,000,000. The input will be
terminated by a line with a single 0.

Output

For each test case output one number, the minimum cost to get from the starting planet to the ending
planet, using the format given below.

Sample Input

3 110 011

3 1 2

5 00000 11111

1 2 3 4 5

4 1111 1000

100 1 1 1

30 000000000000000000000000000000 111111111111111111111111111111

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

Sample Output

Case 1: 4

Case 2: 35

Case 3: 106

Case 4: 4960



2011 East Central Regional Contest 2

Problem B: Chain of Fools

Many of you have heard the story of Turing’s bicycle: Seems the sprocket on the crank of the bicycle
had a broken prong. Also his chain had one link that was bent. When the bent link on the chain came
to hook up with the broken prong, the chain would fall off and Turing would stop and put the chain
back on. But Turing, being who he was, could predict just when this was going to happen — meaning
he would know how many pedal strokes it would be — and so would hop off his bike just before it
happened and gently move the pedals by hand as the undesired coupling passed. Then he’d be merrily
(we imagine) on his way. (A picture of the sprocket-chain set up is shown below.)

Your job here is to calculate the number of revolutions required in such a situation as Turing’s: You’ll
be given the number of prongs on the front sprocket, the number of links on the chain, the location of
the broken prong and the location of the bent link in the chain. The top prong is at location 0, then
the next one forward on the sprocket is location 1 and so on until prong numbered s − 1. (See the
diagram. Notice that prong s − 1 is the next prong that moves to the top of the sprocket as Turing
pedals.) Location of the links is similar: The link at the top of the sprocket is location 0 and so on
forward until c− 1. The chain falls off when broken prong and bent link are both at location 0.

Input

Input for each test case will be one line of the form s c p l, where s is the number of prongs on the front
sprocket (1 < s < 100) , c is the number of links in the chain (200 > c > s), p is the initial position of
the broken prong, and l is the initial position of the bent link. The line 0 0 0 0 will follow the last line
of input.

Broken prong and bent link will never both start at position 0.

Output

For each test case output a single one line as follows:

Case n: r m/s

if it requires r m/s revolutions to first fail, or

Case n: Never

if this can never happen.

Note that the denominator of the fraction will always be the number of prongs on the sprocket; the
fraction will not necessarily be in lowest terms. Always print the values of r and m, even if 0.



2011 East Central Regional Contest 3

Sample Input

40 71 32 23

20 40 4 24

40 71 8 33

20 40 3 17

0 0 0 0

Sample Output

Case 1: 1 8/40

Case 2: 0 16/20

Case 3: 25 32/40

Case 4: Never



2011 East Central Regional Contest 4

Problem C: Condorcet Winners

A Condorcet winner of an election is a candidate who would beat any of the other candidates in a
one-on-one contest. Determining a Condorcet winner can only be done when voters specify a ballot
listing all of the candidates in their order of preference (we will call such a ballot a preference list). For
example, assume we have 3 candidates — A, B and C — and three voters whose preference lists are
ABC, BAC, CBA. Here, B is the Condorcet winner, beating A in 2 of the three ballots (ballots 2 and
3) and beating C in 2 of the three ballots (1 and 2).

The Condorcet voting system looks for the Condorcet winner and declares that person the winner of
the election. Note that if we were only considering first place votes in the example above (as we do in
most elections in the US and Canada), then there would be a tie for first place. There can be at most
only one Condorcet winner, but there is one small drawback in the Condorcet system — it is possible
that there may be no Condorcet winner.

Input

Input for each test case will start with a single line containing two positive integers b c, where b indicates
the number of ballots and c indicates the number of candidates. Candidates are considered numbered
0, . . . , c−1. Following this first line will be b lines containing c values each. Each of these lines represents
one ballot and will contain the values 0, . . . , c− 1 in some permuted order. Values of b and c will lie in
the ranges 1 . . . 500 and 1 . . . 2500, respectively, and the line 0 0 will follow the last test case.

Output

For each test case output a single line containing either the candidate number of the Condorcet winner,
or the phrase No Condorcet winner using the format given.

Sample Input

3 3

0 1 2

1 0 2

2 1 0

3 3

0 1 2

1 2 0

2 0 1

0 0

Sample Output

Case 1: 1

Case 2: No Condorcet winner



2011 East Central Regional Contest 5

Problem D: Everyone out of the Pool

When you rent a table at a pool hall, the proprietor gives you a 4-by-4 tray of 16 balls, as shown in
Figure (a) below. One of these balls, called the “cue ball”, is white, and the remaining 15 are numbered
1 through 15. At the beginning of a game, the numbered balls are racked up in a triangle (without the
cue ball), as shown in Figure (b).

1 2 3 4 5

6 7 8 9

10 11 12

13 14

15

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

(a) (b)

Now imagine other pool-like games where you have a cue ball and x numbered balls. You’d like to be
able to rack up the x numbered balls in a triangle, and have all x+1 balls perfectly fill a square m-by-m
tray. For what values of x is this possible? In this problem you’ll be given an lower bound a and upper
bound b, and asked how many numbers within this range have the above property.

Input

Input for each test case will one line containin two integers a b, where 0 < a < b ≤ 109. The line 0 0
will follow the last test case.

Output

For each test case one line of output as follows:

Case n: k

if there are k integers x such that a < x + 1 < b, x balls can be racked up in a triangle, and x + 1 balls
fill a square tray.

Sample Input

15 17

14 16

1 20

0 0

Sample Output

Case 1: 1

Case 2: 0

Case 3: 2



2011 East Central Regional Contest 6

Problem E: The Banzhaf Buzz-Off

A young researcher named George Lurdan has just been promoted to the board of trustees for Amalga-
mated Artichokes. Each member of the board has a specified number of votes (or weights) assigned to
him or her which can be used when voting on various issues that come before the board. Needless to say,
the higher your weight, the more power you have on the board, but exactly how much power you have is
a difficult question. It depends not only on the distribution of the weights, but also on what percentage
of the votes are needed to pass any resolution (known as the quota). For example, the current board
has 5 members whose weights are 20, 11, 10, 8 and 1, where George has the 1. Whenever a simple
majority of votes are needed (i.e., when the quota is 26) George has very little power. But when the
vote has to be unanimous (quota = 50), George has just as much power as anyone else. George would
like to know how much power he has depending on what the quota is; he figures that if his power is
zero, then there’s no point in going to the meetings—he can buzz off and spend more time on artichoke
research.

After doing some reading, George discovered the Banzhaf Power Index (BPI). The BPI measures how
often each board member is a critical voter in a winning coalition. A winning coalition is a group
of board members whose total weights are greater than or equal to the quota (i.e., they can pass a
resolution). A critical voter in a winning coalition is any member whose departure results in a non-
winning coalition. For example, if the quota is 26, then one possible winning coalition would consist of
20, 10 and 1 (George). Here, each of the first two members of the coalition are critical (since if they leave
the resulting coalition has only 11 or 21 votes), while George is not critical. In the winning coalition
20, 11, 10, 8, 1, no one is critical when the quota is 26, but everyone is when the quota is 50. The BPI
for any member is just the total number of winning coalitions in which that member is critical (NOTE:
in reality, the BPI is actually double this figure, but that’s not important for us here). For example,
when the quota is 26, the BPIs for the members turn out to be 12, 4, 4, 4 and 0, i.e., the board member
with weight 20 is a critical voter in 12 different winning coalitions, the board member with weight 11
is a critical voter in 4 different winning coalitions, etc. As expected, George has no power in this case.
If the quota is raised to 42, then the BPIs are 3, 3, 3, 1 and 1. In this case George has just as much
power as the member with 8 votes!

Since the number of members on the board can vary from 1 to 60 , and board members’ weights can
change over time, George would like a general program to determine his BPI power.

Input

Input for each test case will consist of two lines: the first line will contain two integers n, q, where n
indicates the number of distinct weight values (1 ≤ n ≤ 60) and q is the quota. The second line will
contain n pairs of positive integers w1 m1 w2 m2 · · · wn mn where wi is a weight value and mi is the
number of board members with that weight. The total number of votes V = w1m1+w2m2+ · · ·+wnmn

will be in the range 1 ≤ V ≤ 60. The quota will satisfy the condition V/2 < q ≤ V , and wi 6= wj when
i 6= j. A line containing “0 0” will signal the end of input.

Output

For each test case, output a single line of the form:

Case n: b1 b2 . . . bn

where bi is the Banzhaf Power Index for any member with weight wi. Separate the BPIs with a single
blank.



2011 East Central Regional Contest 7

Sample Input

5 26

20 1 11 1 10 1 8 1 1 1

5 42

20 1 11 1 10 1 8 1 1 1

5 50

20 1 11 1 10 1 8 1 1 1

1 31

1 60

0 0

Sample Output

Case 1: 12 4 4 4 0

Case 2: 3 3 3 1 1

Case 3: 1 1 1 1 1

Case 4: 59132290782430712



2011 East Central Regional Contest 8

Problem F: GPS I Love You

Thomas T. Garmin got a GPS for his birthday last year, and he loved it! Unfortunately, sometimes
Tom wanted to take a scenic route rather than the shortest one as suggested by the GPS. He did a
little reading in the manual and found that he could override the default path-finding algorithm by
specifying roads which the GPS system would be forced to use when determining a route. After some
experimentation, Tom discovered that often, forcing a single road sufficed to get the desired route.
However, for some windier routes, Tom needed to force more roads. Eventually Tom began to worry
that he wasted too much time picking roads to force before each trip. Now, instead of enjoying the
wonders of his GPS, he spends his drives agonizing over the following question: could he have gotten
his GPS to pick the scenic route using fewer forced roads?

Can you save this love affair, or are Tom and his GPS doomed to walk separate paths?

Input

Input for each test case will consist of a number of lines. The first line will contain a single integer
n < 100 indicating the number of endpoints for the roads, numbered 0 to n−1. There will then follow n
lines each containing n non-negative integers. If the jth value in row i is positive, it indicates the length
of a road from endpoint i to endpoint j; if the value is 0, it indicates that there is no road between
those two endpoints. Following these lines will be a line of the form m p1 p2 p3 . . . pm specifying the
scenic route that Tom wants – the route contains m− 1 roads and goes between endpoints p1 and pm,
visiting endpoints p2, p3, etc., in that order. The last test case will be followed by a line containing 0.

Note that when Tom specifies his forced roads to his GPS, he specifies both their direction and order.
All the routes are simple paths and all roads lengths are ≤ 100.

Output

For each test case one line of output as follows:

Case n: k

where k is the smallest number of roads Tom must force such that the GPS will choose the specified
route. You should assume that if there are multiple shortest paths, the GPS always selects the most
scenic of these. Therefore, if Tom’s route is among the shortest to use a given set of forced roads, it
will be picked by the GPS.

Sample Input

4

0 4 0 2

4 0 2 0

0 2 0 2

2 0 2 0

4 0 3 2 1

4

0 4 0 1

4 0 1 0

0 1 0 1

1 0 1 0

4 0 3 2 1

0

Sample Output

Case 1: 1

Case 2: 0



2011 East Central Regional Contest 9

Problem G: Have You Driven a Fjord Lately?

As most of us know, the western Scandinavian coastline contains many small inlets from the sea known
as fjords. Fjords have very steep sides, and make travel along the coast somewhat tedious (though
breathtaking) as the roads must curve back and forth around them. The Fjord Accelerated Scandinavian
Traffic Commission (FAST) has decided to solve this problem by putting in a series of bridges across the
fjords to cut down on the distances which must be traveled. To save costs, FAST is using pre-constructed
bridge units of length 1 meter each, but due to funding restrictions, the total length of bridge that they
can build is limited. Therefore, they would like to determine the optimal locations to install bridges
that would save the greatest length of road. Fjor example, if a bridge of length 10 meters is built that
cuts off 30 meters of old road, a savings of 20 meters is realized. To simplify the determination of where
to locate the bridges, FAST has decided to model each fjord as two line segments connecting three
points as shown in the figure below.

��
�X

XXXq qq
All the angles making fjords are less than 180◦, of course. Furthermore, for safety reasons each bridge
can span at most one fjord.

Input

Input for each test case will consist of two lines. The first line contains two positive integers n and m
indicating the number of fjords and the maximum length (in meters) of bridge that can be built. The
next line will contain 2n + 1 pairs of integer coordinates for the fjords, where the last coordinate for
fjord i serves as the first coordinate for fjord i + 1. All coordinates are given in units of meters and
will be between -300000 and 300000. The maximum values for n and m are 50 and 3000, respectively.
Input will end with the line 0 0.

Output

For each test case output a single line containing the case number followed by the length of the bridge
used and the total savings for the optimal placement of bridges, using the format shown below. All
values should be in meters and round the latter number to the nearest hundredth.

Sample Input

2 6

0 0 4 2 0 4 2 6 0 8

2 6

0 0 4 2 0 4 8 6 0 8

2 10

0 0 4 2 0 4 8 6 0 8

0 0

Sample Output

Case 1: 6 meters used saving 5.77 meters

Case 2: 6 meters used saving 14.96 meters

Case 3: 8 meters used saving 17.44 meters



2011 East Central Regional Contest 10

Problem H: Mobile

You’ve probably seen mobiles suspended from the ceilings of museums or airports. We’ll restrict our-
selves to the type suspended from the ceiling by a single wire that is attached to a pivot point on an
arm (also made of wire). At each end of the arm is either another wire suspending yet another arm, or
a weight (usually in the form of some design). Below is one example, made by Alexander Calder, the
best-known mobile artist.

Some mobiles are simple and some are quite complex. Be-
sides the artistry, these must balance. Recall that from a
pivot point distance dL from the left and dR from the right,
an arm will balance if the product of the weight at the left
end and dL is equal to the product of the weight at the right
end and dR. (We ignore the weight of the arm and the wires
suspending the arms.)

For example, consider the mobile drawn below. If weight 1 weighs 8 units, then weights 2, 3, 4, and
5 must weigh 2, 6, 4, and 4 units respectively. In fact, if you know the structure of the mobile, that
is, the arrangement of arms and where the pivot points are on each arm, and the value of one weight,
you can determine the values of all the weights. That is your problem here – almost. It seems you only
have weights that are integer valued. So, you’ll be given the desired minimum value of one weight and
determine the value of the other weights, so that those values will also be integers. Thus, it’s possible
that the specified minimum valued weight must be raised a little bit to accomplish this.

4 2

2 2

3 1 1 1

1

2 3 4 5

Input

Input for each test case will start with a line containing the positive integer n, indicating the number
of arms in the mobile. These arms are numbered 1 through n. The next n lines will describe the arms,



2011 East Central Regional Contest 11

in order 1, 2, . . . , n, and will be in the form

dL dR typeL typeR nL nR

where dL and dR are integers ≤ 20 giving the distances from the pivot point to the left end and right
end of the arm, typeL and typeR are each either W or A, indicating that a weight or arm hangs from
the left or right ends, and nL and nR are the index numbers of the weight or arm on the left and right.
The indices for the weights will start at 1 and be consecutive. The mobile will not have an arm that is
hanging further down than 6 arms from the top. In our example above the lowest arm is 3 arms from
the top.

Following the description of the arms is a line of the form m w, indicating that weight m weighs at least
w, where 1 ≤ w ≤ 20.

A line containing a 0 follows the last test case.

Output

For each test case output one line giving the minimum total weight of the mobile if weight m is at least
w. Use the format given in the Sample Output. You may assume all output values will be less than
109.

Sample Input

4

3 1 W W 2 3

4 2 W A 1 3

2 2 A A 1 4

1 1 W W 4 5

1 8

4

2 2 A W 2 5

3 1 W A 4 3

4 1 W A 3 4

2 1 W W 1 2

3 20

0

Sample Output

Case 1: 24

Case 2: 280



2011 East Central Regional Contest 12

Problem I: Wally World

Two star-crossed lovers want to meet. The two lovers are standing at distinct points in the plane (but
then again, aren’t we all?). They can travel freely except that there is a single wall which cannot be
crossed. The wall is a line segment which is parallel to either the x or y axis. Each lover can move 1
unit in 1 second. How long will it take them to be together if they both choose the best path?

Input

Input for each test case will consist of two lines each containing four integers. The first two integers
will specify the x and y coordinates of the first lover; the next two integers will specify the x and y
coordinates of the second lover. The next four integers will specify the start and end points of the wall.
Furthermore, in all cases both lovers will not be on the (infinite) line containing the wall — that is, the
wall extended in both directions. All coordinates will be positive and less than or equal to 10000 and
neither lover will start on the wall. The input will be terminated by a line containing four zeroes.

Output

For each test case, output the minimum time in seconds for the two lovers to meet. Print the answer
to exactly 3 decimal places, using the output format shown in the example.

Sample Input

5 2 7 2

1 1 1 100

1 2 3 2

2 1 2 100

0 0 0 0

Sample Output

Case 1: 1.000

Case 2: 1.414


